WATER AVAILABILITY ASSESSMENT FOR BEAU SOLEIL SUBDIVISION TAOS COUNTY, NEW MEXICO

prepared for Beau Soleil Subdivision Taos County, New Mexico

prepared by Jason Hall Water Solutions 1408 Seville Road Santa Fe, New Mexico 87505

November 2011

TABLE OF CONTENTS

I. INTRODUCTION
II. GEOLOGIC SETTING
III. SITE HYDROGEOLOGY
Site Specific Geology5
Site Hydrogeologic System
IV. WELL RG-92910 CONSTRUCTION AND DEVELOPMENT
V. WELL RG-92910 PUMPING TEST
Constant Rate Discharge Test8
Pumping Well, RG-929109
Drawdown Data9
Specific Capacity
Recovery Data
VI. WATER USE, WATER AVAILABILITY, AND MODELING11
Current Water Use Within 1,000 feet
Proposed Beau Soleil Subdivision Water Use
Analytical Modeling
Projected Drawdowns
Streamflow Effects
Lowest Practical Pumping Water Level14
VII. HISTORIC WATER LEVEL DATA 15
VIII. ADDITIONAL WELLS ON PROPOSED BEAU SOLEIL SUBDIVISION. 16
IX. WELL RG-92910 WATER QUALITY 17
X. SUMMARY AND CONCLUSIONS 19
XI. REFERENCES

TABLES

- 1. Summary of aquifer characteristics derived from RG-92910 pumping test data.
- 2. Wells within 1,000 feet of proposed Beau Soleil Subdivision property boundaries.
- 3. Water quality analytical results for RG-92910.

FIGURES

- 1. Site Location Map
- 2. Geologic Map
- 3. Geologic Cross-Section
- 4. Taos Area Stratigraphic Chart
- 5. Potentiometric Surface Map
- 6. Lithologic Log and Well Completion Diagram

APPENDICES

A. NMOSE Well Records:

On-Site Well RG-92910 and Wells Within 1,000 feet of Property

- B. RG-92910 48-hour Pumping Test Data and Graphs
- C. TH96S Model Results
- D. Glover-Balmer Model Results
- E. USGS Historic Water Level Data
- F. RG-92910 Laboratory Water Quality Report

I. INTRODUCTION

Jason Hall Water Solutions (JHWS) was retained to prepare the Water Availability Assessment (Geohydrology Report) for the proposed Beau Soleil Subdivision. This Report has been prepared according to the County of Taos, New Mexico, Ordinance No. 2005-8, Subdivision Regulations: Article 4, Section 4.3.3, Section 4.3.4, and Section 4.3.5, and Article 16, Appendix A, as well as the New Mexico Subdivision Act, as amended in 1995.

The location of the proposed Beau Soleil Subdivision (the property) is approximately 8 miles north of the Town of Taos in Taos County, New Mexico. The property is west of Arroyo Seco and east of New Mexico 522, in projected Section 1 of Township 26 North, Range 12 East in the Antonio Martinez or Godoi Grant (Figure 1). The total area of the proposed Type IV subdivision is 400 acres to be divided into 35 lots of no less than 10 acres each, and two common areas that will be left undeveloped.

The proposed water supply plan for the property consists of domestic wells permitted with the New Mexico Office of the State Engineer (NMOSE) for 3.0 acre-feet per annum (afa) under New Mexico State Statute 72-12-1 for multiple household domestic use. Covenants will allow for each well to serve from one to six lots and will limit each lot to 0.5 afa maximum diversion, for a total diversion of no more than 3.0 afa per well. The total diversion for the proposed subdivision, 35 lots at 0.5 afa per lot, equals 17.5 afa. The large, 10-acre-plus lot sizes assure a low density of wells on the property. The large lot sizes also raise the costs of infrastructure for delivering water to multiple lots from shared wells. It may be more economical overall, and it will not increase the demand on the aquifer beneath the site, to have fewer than six lots connected to each well, or even a well on each lot.

The property is situated on Quaternary alluvium shed from the west side of the Sangre de Cristo Mountains (Figure 2). JHWS oversaw the drilling and completion of well RG-92910 to a total depth of 440 feet below ground surface (bgs) and performed a 48-hour Constant Rate Discharge Test (pumping test) on the completed well at a constant discharge rate of

10.5 gallons per minute (gpm). Well RG-92910 was drilled and completed in September 2011 by Fennell Drilling Company of Taos, NM, NMWD License Number WD-987. The well site is situated on a Pleistocene alluvial fan surface. The 440-ft boring penetrated the underlying sequence of interbedded sand, sandy/silty clays, and fluvial gravels from ground surface to 385 feet bgs, and hard, black, fractured basalt from 385 to 440 feet bgs (Figure 6).

II. GEOLOGIC SETTING

The proposed Beau Soleil Subdivision is situated on the northern edge of the Taos Valley, which is in the southeastern corner of the San Luis Basin, the northernmost basin within the Rio Grande Rift. The San Luis Basin is bordered on the east by the Sangre de Cristo Mountains and on the west by the San Juan and Tusas Mountains. The basin is made up of the broad San Luis Valley in south-central Colorado and the narrow Taos Plateau in north-central New Mexico. Taos is situated near the southern boundary of the 150-mile long San Luis Basin on its the eastern margin, west of the Sangre de Cristo uplift (Figures 1 and 2).

The Rio Grande Rift has been formed by extensional tectonic activity since the middle Tertiary period. The Rift is comprised of a series of well-defined asymmetrical grabens that extend from Colorado to Mexico for more than 600 miles (Baldridge, et al., 1984). The other major basins within the Rio Grande Rift in northern New Mexico lie south of the San Luis Basin; they are the Española Basin and the Albuquerque Basin. The Embudo Fault Zone south of Taos separates the east-tilted San Luis Basin from the west-tilted Española Basin (Dungan et al., 1984). Mountain blocks that were uplifted along faults at their edges typically flank these basins. In the Taos area, the Sangre de Cristo Mountains were uplifted along the Sangre de Cristo fault, a major normal fault that trends northwest to southeast near the mountain front (Rawling, 2005). In the vicinity of the Taos Plateau Volcanic Field, the Rio Grande Rift consists of a series of horsts and grabens, with the Rio Grande flowing along the surface of a deep graben. The sources of the Taos Plateau volcanic field are volcanic centers located primarily within the western side of the rift.

Down-cutting of the Rio Grande, through the Servilleta basalts in the Taos area, has generally occurred along weaknesses caused by fracturing parallel to the axis of the rift. Stratigraphy to the east of the rift generally dips to the west toward the Rio Grande, and strata on the west side of the Rift generally dip to the east, but less steeply and less uniform in orientation than on the east side (Coons and Kelley, 1984). Normal faults that dip 50-80 degrees from horizontal dominate faulting in the Rift (Kelley, 1978). Quaternary alluvial fan sediments derived from the Sangre de Cristo Mountains underlie the Taos Valley.

The property is underlain by approximately 40 feet Quaternary age alluvial fan deposits, consisting of calcium carbonate bearing, medium to coarse grained sandy gravel and silty clay. Beneath that is a late Tertiary to middle Pleistocene deposit of poorly sorted yellow to tan colored clay, sand, gravel, and cobbles, known as the Blueberry Hill Formation (Johnson et al., 2009). This formation is interpreted to be a sequence of highly oxidized and weathered alluvial and mudflow deposits, due to extensive saturation in the past, that was likely formed during the early to middle Pleistocene as a result of alluvial deposition on the plateau, prior to regional incision of the Rio Grande and the resulting drop of the water table (Bauer and Kelson, 2004). RG-92910 penetrates about 385 feet of Tertiary-age basin fill. The material encountered from 260 to 385 feet bgs was moderately well sorted arkosic coarse sand and gravel, sub-rounded to rounded, and water bearing from approximately 320 feet down (Figures 2, 3, 4, and 6).

Hard, black, massive, crystalline fractured basalt of the Servilleta Formation, or alternately of the Cerro Negro dacite volcano, was encountered from 385 feet bgs in the boring to total depth at 440 feet bgs. Within the 55 feet of fractured basalt drilled in the borehole, arkosic, sub-rounded coarse sand and gravel was encountered, indicating interbedded water-bearing alluvial sand layers or lenses, and/or buried channel deposits. The Servilleta basalts range in age from 2.8 to 4.5 million years old (Lipman and Mehnert, 1979). The source vents of the Servilleta basalts are located to the northwest of Taos and the basalt flows thin, from up to 650 feet thick to zero, toward the south and east (Dungan et al., 1984).

The other potential source of the basalt encountered in the boring is the Cerro Negro dacite volcano. This small, Pliocene age dacite shield volcano is situated a few miles northeast of

the property. The Cerro Negro dacite is dark gray to black, extensively fractured, and comprised of two-pyroxene dacite flows and/or shallow intrusions (Rawling, 2005). It is well exposed in the narrow gorge of the Rio Hondo at the Gates of Valdez, where the rock is massive, dark gray to black, and extensively fractured (Rawling, 2005). The basalt encountered in the RG-92910 well boring may be either buried lava flows or sills (Figure 3). The source was either the Cerro Negro dacite volcano or outlying flows of the Servilleta Formation basalts.

Underlying the Servilleta Formation is the Miocene to Pliocene age Chamita Formation, which was originally defined in the Española Basin as the uppermost portion of the Santa Fe Group, which includes middle Miocene to upper Pliocene rift-fill sediments of the Rio Grande Valley in north-central New Mexico (Galusha and Blick, 1971). The lower formations of the Santa Fe Group make up the Miocene-age Tesuque Formation, which has a much greater thickness and lateral extent than does the overlying Chamita Formation. The Tesuque Formation consists of pinkish-tan soft arkosic, silty sandstone with minor conglomerate and siltstone, up to thousands of feet thick (Spiegel and Baldwin, 1963). The Tesuque Formation is subdivided into five members; from upper to lower they are: the Ojo Caliente Member, the Chama-El Rito Member, the Pojoaque Member, the Skull Ridge Member, and the Nambe Member (Galusha and Blick, 1971).

III. SITE HYDROGEOLOGY

The proposed Beau Soleil Subdivision is located on Quaternary alluvial deposits shed from the Sangre de Cristo Mountains to the east of the property. The test well at Beau Soleil, RG-92910, was completed into arkosic sand and gravel sequences and the upper basalt bed of the Servilleta Formation or the Cerro Negro dacite. The alluvial sediments that the upper portion of the well penetrated are comprised of tan and yellow, silty, arkosic sand and gravel, with silty/sandy clay interbeds. The basalt that the bottom of the well is completed into is hard, black, crystalline, and fractured.

Regional groundwater in the vicinity of the property exists primarily within the Quaternary-Tertiary alluvial fan sediments known as the Blueberry Hill deposit, the Servilleta Formation basalts and interbedded sediments, and the Cerro Negro dacite. The alluvial aquifer in the Blueberry Hill Formation is south of the Rio Hondo and east of the Airport fault, and is semi-perched on the Cerro Negro dacite, a massive, crystalline volcanic unit. The Cerro Negro dacite contains localized, productive aquifers in fractured and rubble zones but generally appears to behave as a perching bed for shallow alluvial aquifers. (Johnson, 2009)

The aquifer system is recharged by infiltration of runoff from the Sangre de Cristo and Picuris Mountains through fractures in canyons and at the mountain front. Additionally, recharge from precipitation and irrigation return flows occurs through the arroyos and alluvium of the fan deposits on the land surface.

Site Specific Geology

JHWS oversaw well drilling and completion, analyzed and described the drill cuttings pulled at 10-ft intervals, compiled a lithologic log, and conducted constant rate discharge and water quality testing on well RG-92910 (Figure 6 and Appendix B). The well was drilled and completed to a total depth of 440 feet in late August and early September of 2011 by Fennell Drilling Company of Taos, NM. The ground surface elevation at the wellhead is approximately 7,390 feet above mean sea level (msl). The well was drilled into a dissected Plio-Pleistocene-age alluvial fan surface (Figures 2 and 3). From ground surface to 50 feet bgs, the well was drilled through coarse sand and gravel of the alluvial fan. From 50 feet to 385 feet, poorly sorted, yellow to tan, very fine to coarse sand, gravel, and interbedded silt and clay, interpreted to be alluvial deposits of the Blueberry Hill Formation, were encountered in the boring. Below 385 feet, massive black basalt was encountered, either the upper bed of the Servilleta Formation or from the Cerro Negro Volcanic Complex (Appendix A). A comprehensive local hydrogeologic cross-section, representative of the conditions encountered in the Beau Soleil test well, was available from "Geology and Hydrogeology of the Arroyo Seco Area, Taos County, New Mexico Final Technical Report" by Geoffrey C. Rawling. The cross section is shown in Figure 3 and the location of the line of section, A - A'- A", is shown in Figure 2.

Site Hydrogeologic System

The principal hydrostratigraphic units underlying the property of the proposed Beau Soleil Subdivision are alluvial sand and gravel of the Blueberry Hill Formation and fractured basalt from either the Servilleta Formation or the Cerro Negro Dacite Volcano. The water level in RG-92910 was 306 feet bgs (7,084 feet above msl) upon completion of well development and at commencement of the pumping test.

The aquifer system is recharged by snowmelt and rainfall in the Sangre de Cristo and Picuris Mountains that bound the eastern side of the rift. Rainfall and snow melt percolate through the fractured Precambrian and upper Paleozoic rocks of these mountains and into the sedimentary units filling the rift. Losing reaches of streams draining the Sangre de Cristo Mountains provide additional groundwater recharge. The ultimate discharge point for this water is the Rio Grande. The Rio Grande is a gaining reach from Arroyo Hondo north of Taos to Taos Junction Bridge below the confluence with the Rio Pueblo, indicating that basin-fill sediments in the northern Taos Valley discharge into the Rio Grande (Figure 5).

The regional water table and potentiometric surface beneath and in the near vicinity of the property indicate a west/southwest groundwater flow direction at a gradient of approximately 0.05 ft/ft (Figure 5). A high-transmissivity downward flow area was mapped, based on well records and water level measurements, to the southwest of the property (Drakos, 2004). The alluvial sand and gravel and fractured basalt allow for rapid groundwater movement through the aquifer.

Taos is located within the Rio Pueblo de Taos drainage basin, which drains the Sangre de Cristo Mountains and enters the Rio Grande southwest of the Town of Taos. Groundwater in the vicinity of the property is generally flowing toward the Rio Grande, to the west/southwest, similar to local ground surface topography. The groundwater gradient in the vicinity of the property calculated from the potentiometric surface map is 0.05ft/ft to the west/southwest (Figure 5).

IV. WELL RG-92910 CONSTRUCTION AND DEVELOPMENT

Jim Fennell of Fennell Drilling Company drilled the test well on the proposed Beau Soleil Subdivision by mud rotary method with an 8 ³/₄-inch tri-cone button bit between August 22 and September 5, 2011. First water was encountered during drilling, in coarse sand and gravel, at approximately 310 - 320 feet bgs. Basalt was encountered from 385 feet bgs to total depth of 440 feet bgs in the boring. Within the 55 feet of fractured basalt drilled, coarse, sub-rounded arkosic sand and gravel was observed in the drill cuttings, indicating interbedded water-bearing alluvial sand layers or lenses, and/or buried channel deposits in the basalt. The mud-rotary drilling method, however, does not allow for accurate determinations of water production in formations during drilling, so an accurate estimate of production from the formations encountered was not established until the well was completed and developed.

Once the total depth of 440 feet had been reached in the well boring, the well was cased with 6 5/8-inch outer diameter, 0.188-inch wall thickness, mild steel pipe. A 10-ft blank section of pipe was installed at the bottom of the casing string as a sump. Above the sump, 100 feet of 0.040-inch perforated pipe was installed in 20-ft sections, from 430 to 330 feet bgs. Above the perforations, 331.65 feet of blank pipe was installed in 20-ft sections from 330 feet bgs to 1.65 feet above ground surface (ags) and the casing was landed at total depth. All joints in the casing were welded securely, with no gaps or holes. Centralizers were installed around the casing throughout and above the perforated section.

The filter pack that was installed, following installation of the well casing, consisted of ¹/₄inch rounded and washed pea gravel, poured slowly from ground surface. The filter pack was installed from 440 to 40 feet bgs and was surged with a bailer run inside of the well casing during the gravity pour of the gravel to ensure proper settling and no bridging. Prior to installation of the bentonite surface seal, the well was developed to ensure total settling of the filter pack.

The well was developed by air-lifting through the drill pipe, utilizing a 900 cubic feet per minute (cfm), 300 pounds per square inch (psi) compressor. The well was air-lifted for approximately 16 hours over three days, intermittently shutting off the air and allowing the water column to recover. The water level recovered to static very quickly every time that the air was shut off during development. Once it was determined that the gravel pack had not settled during air-lifting, the bentonite surface seal was installed from 40 to 4 feet bgs, allowing room for installation of the pitless adapter at approximately 3 feet bgs.

The 5 horsepower (hp) test pump was installed on September 19, 2011, set on 2 3/8-inch outer diameter drill pipe at 420 feet bgs. A ³/4-inch PVC pipe was set from 2.2 feet above ground surface to the pump at 420 feet bgs for the water level monitoring device (sounder). Additional well development was conducted, utilizing the pump, for approximately four hours on September 19, 2011. A free discharge with a fine-thread gate valve was installed from an elbow at the top of the pump column pipe for installation of the weir. The well was allowed to recover prior to conducting the pumping test.

V. WELL RG-92910 PUMPING TEST

Constant Rate Discharge Test

A 48-hour (2880-minute) constant rate discharge test (pumping test) was conducted on RG-92910 once the well was completed, developed, and the water column had recovered. The pumping test was conducted from September 21 to 23, 2011 and commenced at 9:00 on the 21st. The static water level prior to starting the pump was 308.30 feet below the measuring point (bmp) at the top of the ³/₄-inch PVC pipe installed in the well for the water level meter (sounder). The top of the sounder tube was 2.2 feet ags, yielding a measuring point correction of -2.2 feet. The static water level below ground surface prior to starting the pump, therefore, was 306.1 feet.

The discharge rate from the well was measured using a 3-inch circular orifice weir with a 1inch orifice. The discharge rate was periodically verified throughout the test by timing the

filling of a 5-gallon bucket. Upon start-up of the pump, the discharge rate was approximately 25 gpm and the gate valve in the discharge line was closed down and adjusted to limit the discharge to 10.5 gpm. The valve was adjusted and opened slowly throughout the 48 hours of pumping to maintain 10.5 gpm. Discharge was clear after the first minute of pumping and averaged 10.5 gpm over the duration of the test. No sediment was detected in the discharge throughout the test. Approximately 10 hours into the pumping test, the generator started missing slightly and smoking (at approximately 620-minutes), but continued to run and power the pump until it was replaced at 650-minutes, with minimal downtime of the pump. The water column did recover somewhat while the generator was being replaced, but drawdown resumed at the same slope as prior to the generator replacement within approximately 100-minutes of restarting the pump and was consistent for the duration of the test, another 38 hours (Appendix B).

Water levels in the pumping well were measured manually to the nearest 0.01 ft using an electronic water level monitoring device. Upon starting the pump at the beginning of the drawdown phase of the test and upon shutting off the pump at the beginning of the recovery phase of the test, the water column dropped and rose sharply, in a manner reflective of a wave passing through the well across the top of the water table, before stabilizing. This observed effect is mirrored in the drawdown and recovery plots, one inverse to the other. No boundary effects were observed in the drawdown or recovery data. Drawdown and recovery data and plots are contained in Appendix B.

Pumping Well, RG-92910

DRAWDOWN DATA

The pumping test was run for 2880-minutes. Maximum drawdown measured in the well once the discharge rate was stabilized at 10.5 gpm was 13.57 feet. Casing storage was calculated using the Schafer (1978) modified Papadopulus-Cooper equation (Driscoll, 1986) and was negligible after approximately 19 minutes of pumping, at 10.23 feet of drawdown (see Appendix B and Table 1, below).

Drawdown data from RG-92910 were plotted on semi-log scales and analyzed using the Cooper-Jacob method to determine aquifer transmissivity (T) and hydraulic conductivity (K). Pumping well drawdown data exhibit one distinct slope, after casing storage effects. A transmissivity value of approximately 2,772 gpd/ft (371 ft²/day) was calculated from the average of drawdown data. The maximum drawdown for the test was 13.57 feet, to a water level of 321.87 feet bmp. The total discharge from the well during the 48-hour pumping test was approximately 30,240 gallons, or 0.09 acre-feet.

Hydraulic conductivity (K) was calculated using an aquifer thickness (b) of 100 feet, based on the perforated interval in the well and a conservative quantification of the producing alluvium and fractured basalt encountered in the boring (Table 1). Based on an average of drawdown and recovery data, K at the Beau Soleil site is approximately 6.49 ft/day. This value of hydraulic conductivity is in the same range as other wells completed into the unconfined alluvial aquifer nearby (Drakos, 2004). There was no nearby well that was not in production on a daily basis to employ as an observation well for this test; therefore, storativity (S) could not be calculated from this pumping test. Storage coefficients for unconfined aquifers range from 0.01 to 0.30 (Sterrett, 2007). Data from a pumping test with an observation well on the nearby Quail Ridge unconfined alluvial well yielded a storage coefficient of 0.012 (Drakos, 2004). A conservative value of 0.01 is used for the storage coefficient (S) in the following calculations and modeling.

Specific Capacity

Specific capacity of the well (in gallons per minute per foot of drawdown) stabilized at 0.8 gpm/ft at 150 minutes, or 12.67 feet of drawdown, and remained relatively constant throughout the duration of the test.

Recovery Data

Recovery water levels were measured directly following shut off of the pump for 150 minutes, until 11:30 on September 23, 2011. The water level had recovered to 308.39 feet

bmp, or 0.09 feet below the original static water level measured prior to the start of the pumping test. Transmissivity calculated from the recovery data using the Cooper-Jacob straight-line methodology is 6,930 gpd/ft (927 ft²/day). The transmissivity calculated from recovery data is approximately 2.5 times that of the drawdown data. This is likely due to well inefficiency observed during the drawdown phase of the pumping test. The recovery data is more representative of the natural aquifer conditions beneath the property than the drawdown data. However, to be conservative, the average of transmissivity values derived from both the drawdown and the recovery data, 4,851gpd/ft (649 ft²/day) is used in the following calculations and modeling. Based on the data collected from well development and the pumping test, the well can produce at a higher pumping rate than 10.5 gpm without significantly greater drawdown.

Table 1. Summary of aquifer characteristics derived from RG-92910 pumping test data.							
	Time Period	Analytical	Т	Т	K*		
Test Phase	(min.)	Method	(gpd/ft)	(ft^2/day)	(ft/day)		
Pumping Well							
Drawdown	0 - 2880	Cooper-Jacob	2772	371	3.71		
Pumping Well							
Recovery	2880 - 3030	Cooper-Jacob	6930	927	9.27		
Averag	e (drawdown & re	4851	649	6.49			
* K calculated using a saturated aquifer thickness (b) of 100'							

VI. WATER USE, WATER AVAILABILITY, AND MODELING

Current Water Use Within 1,000 feet

There are currently four wells within 1,000 feet of the proposed Beau Soleil Subdivision boundaries, according to NMOSE records. Three of the wells have well records on file with the NMOSE (see Appendix A and Table 2, below); RG-56130 does not have a well record on file with the NMOSE. One significant surface water feature, the Mariposa Ditch, exists within 1,000 feet of the property boundaries. This feature is located to the northwest of the property, hydrologically up gradient from the proposed groundwater diversion that will supply the proposed Beau Soleil Subdivision. Due to the up gradient location of this feature, the 300-ft depth to groundwater, and the relatively low annual diversion proposed, it is very unlikely that the Mariposa Ditch will be impacted from the groundwater diversion proposed at Beau Soleil.

Table 2. Wells within 1,000 feet of proposed Beau Soleil property boundaries.						
NMOSE Permit Number	Owner	Diversion (afa)	Total Depth (feet bgs)	Depth to Water (feet bgs)	Distance from RG-92910 and Bearing/ Distance from Property Boundary (feet)	
	George					
RG-69936	Bornstein	3	610	320	4290' NW / 344'	
	Dale					
RG-56130	Jenssen	3	?	?	4871' SW / 587'	
	Michael					
RG-88383	Yaccino	1	480	267	1381' NE / 649'	
	Roger					
RG-88425	Eiteljorg	1	420	178	1382' NE / 650'	

Proposed Beau Soleil Subdivision Water Use

The proposed Beau Soleil Subdivision, if fully developed, will consist of 35 lots, each one limited to 0.5 afa of water use. The maximum diversion for the proposed subdivision will be 17.5 afa, or a constant single pumping rate of 10.8 gpm if the subdivision wells are pumped at full demand, with each lot diverting its maximum allowable use of 0.5 afa per lot. The following calculations were made conservatively, using a single point of diversion pumping at the full subdivision demand.

Analytical Modeling

Projected Drawdowns

The projected drawdown due to pumping the proposed Beau Soleil Subdivision at full development was modeled using the Theis analytical model. The NMOSE TH96S program was employed to analyze drawdowns in the pumping well, RG-92910, at full subdivision demand, 17.5 afa or 10.8 gpm, and the four wells of other ownership within 1,000 feet, pumping at their maximum allowable diversions (see Appendix C). The model was set up using RG-92910 as the pumping center for the entire subdivision demand at 10.8 gpm. The value of transmissivity used in the model, 4,851 gpd/ft, was conservatively based on the average between the drawdown and recovery data acquired from the 48-hour pumping test on RG-92910 on the proposed Beau Soleil Subdivision.

The four wells currently in use within 1,000 feet of the property boundaries listed in Table 2 range from 1,381 to 4,871 feet in distance from the pumping well RG-92910. In order to be conservative and procure results from the Theis model that will represent the subdivision at full development with the 17.5 afa diversion spread across the property, the distances to the wells from the property boundaries, 344 to 649 feet, were input into the model. The diversion rates input for the wells currently in use were based on NMOSE permits. For a permitted diversion of 3.0 afa, 1.9gpm was input into the model, and for 1.0 afa, 0.6 gpm was input.

The Theis model projects a drawdown at the pumping well, RG-92910, of 6.99 feet after 50 years. The drawdowns projected at the four wells currently in use, from nearest to farthest from the property boundaries, are: 4.36 feet, 4.18 feet, 3.95 feet, and 3.92 feet (Appendix C).

Streamflow Effects

The nearest stream systems to the proposed Beau Soleil Subdivision property are the Arroyo Seco (1.5 miles SW), the Rio Hondo (2 miles N), and the Rio Grande (5.75 miles W). The Arroyo Seco is generally dry; therefore effects on it were not calculated in the Glover-Balmer

model. The Rio Hondo lies about 2 miles up gradient from the property and depletion effects on it are unlikely, so effects on it were not calculated in the model. The Rio Grande is perennial and down gradient from the property at a distance of approximately 5.75 miles and all depletion effects will ultimately be felt on the Rio Grande. The Glover-Balmer model was utilized to calculate 50-year stream depletion effects on the Rio Grande. The model results indicate that pumping the full subdivision demand of 17.5 afa at the proposed Beau Soleil Subdivision, projected for the next 50 years, will result in 11.37 afa, or 65%, stream depletion effects per year on the Rio Grande after 50 years of pumping the full subdivision demand (see Appendix D).

In order to be conservative and assess depletion effects on the Arroyo Seco and the Rio Hondo, in addition to the Rio Grande, a ratio can be employed based on distance to each of the streams. If it is assumed that the full subdivision demand of 17.5 afa comes from the stream systems, then it can be divided between the Arroyo Seco and the Rio Hondo, which will ultimately result in depletions on the Rio Grande. Based on their distances from the test well, 1.5 miles to the Arroyo Seco and 2.0 miles to the Rio Hondo, the percentage of depletions on the stream systems will be 57%, or 10.0 afa, on the Arroyo Seco and 43%, or 7.5 afa, on the Rio Hondo.

Lowest Practical Pumping Water Level

In well RG-92910, completed into the alluvial aquifer and basalt beneath the Beau Soleil Subdivision, the lowest practical pumping water level may be defined by a maximum allowable drawdown equal to 70% of the initial water column based on Taos County Subdivision Regulations Appendix A, Section 1B.4. The initial water column is 134 feet (440-ft total depth, less 306-ft static water level). The maximum allowable drawdown, 70% of the initial 134-ft water column, is equal to 94 feet. The allowable drawdown shall be reduced by a factor of 20% to take into account drought, pump setting and well inefficiencies, equal to 27 feet. The result is a maximum allowable drawdown of 67 feet in the well, or 373 feet bgs for the lowest practical pumping water level. There is sufficient

water column in the test well to absorb the Theis model predicted drawdown of 6.13 feet and support pumping at full subdivision demand, 17.5 afa total, for 50 years.

VII. HISTORIC WATER LEVEL DATA

A water level was obtained from a well east/northeast of RG-92910 known as the "Old Mariposa Ranch Well". The NMOSE permit number of this well is unknown. A water level was measured in this well on July 24, 1995 at 295 feet bgs, or 7,110 feet above msl (Rawling, 2005). The total well depth is estimated at 700 feet bgs and screened intervals are unknown. The water level in the well was measured by JHWS on November 3, 2011 at 286.16 feet bgs, or 7,118.84 feet above msl. These data indicate that the water level has risen 8.84 feet in the past 16 years, at a rate of approximately 0.55 feet per year.

Historic water level data are available for a USGS groundwater monitoring well, site number 362246105395801, located southwest of the property at 25N.12E.21.434 (Township 25 North, Range 12 East, Section 21, SE ¹/₄, SW ¹/₄, SE ¹/₄) in Taos County, New Mexico Latitude 36°21'52.7", Longitude 105°47'57.1" NAD83. The ground surface elevation at the wellhead is 6,870 feet above msl. The total depth of the well is 530 feet bgs. This well is completed into alluvium (USGS, 2011). The well was monitored for 21 years, from 1983 to 2004 (see Appendix E). The first data point in 1983 appears to be erroneous or representative of an abnormally high water table at 16 feet bgs. From 1988 to 1993 water level data indicate fluctuations up and down between 35 and 40 feet bgs without a consistent pattern. In 1988 the water level was measured at 40.40 feet bgs. Ten years later, in 1998, the water level had risen to 37.38 bgs and began to exhibit a consistent trend of decline that continued until 2004, at which point the water level was measured at 38.62 feet bgs. In the 6 years between 1998 and 2004 the water level in the well declined 1.24 feet, at a rate of approximately 0.21 feet per year. This is the most conservative available data for determining historic water level declines in the shallow alluvial aquifers in the Taos Valley.

At a rate of 0.2 feet per year of decline, the water levels in the proposed subdivision wells

will decline 10 feet over the next 50 years. The 134-ft water column in the well is sufficient to absorb the Theis model predicted drawdown of 6.13 feet, plus the anticipated water level decline of 10 feet based on historic water level data, for a total of 16.13 feet, or 12% of the total water column, and still be well within acceptable maximum allowable drawdown limits (less than 50%) according to Taos County Regulations.

VIII. ADDITIONAL WELLS ON PROPOSED BEAU SOLEIL SUBDIVISION

Based on data collected from the test well on the proposed Beau Soleil Subdivision and presented in this report, the additional wells required on the subdivision for full development, if completed properly in a similar manner to the test well, will produce sufficient water to supply the demands of up to six lots per well, with one home and one guesthouse per lot. For homes with conservative plumbing fixtures and water saving appliances, a water requirement of 60 gallons per capita day can be assumed for normal household uses and an average occupancy rate of 3 occupants per household is reasonable for calculation purposes (Wilson, 1996). The result is a water demand of 180 gallons per day per household, or a conservatively high maximum estimate of 360 gallons per day per lot with a fully occupied main home and guesthouse, which is not common. Over one year, that is 0.4 afa, 20% below the proposed maximum use per lot of 0.5 afa. The proposed water supply plan will allow for wells to serve anywhere from one to six lots. The maximum projected demand per well, therefore, is 2,160 gallons per day with six lots per well. Over one year, that equals 2.4 afa, 20% below the NMOSE allowable diversion per well of 3.0 afa.

At pumping rates of 10.5 gpm or greater, the wells will need to pump for 206 minutes per day (14% of the time), or less, to supply the maximum potential demands on each well. In order to have enough water to supply peak demands, such as in the mornings or evenings, and to prevent premature pump failures due to pumps cycling on and off continuously, installation of pressure tanks at each wellhead will be recommended.

IX. WELL RG-92910 WATER QUALITY

Samples were collected for water quality analysis after 2860 minutes of pumping at 10.5 gpm during the pumping test (at 8:40 on September 23, 2011). Samples were placed on ice and delivered to Hall Environmental Analysis Laboratories (HEAL) in Albuquerque, NM for analyses. Water quality results are summarized in Table 4, below, and complete laboratory reports are contained in Appendix F.

All primary constituents analyzed for were below U.S. Environmental Protection Agency (EPA) and New Mexico Water Quality Control Commission (NMWQCC) primary (health-related) Maximum Contaminant Levels (MCLs). All secondary constituents analyzed for were below EPA secondary (aesthetic) MCLs.

Parameter	Analytical Result EPA Standard		Units
pН	8.02	8.02 6.5 - 8.5*	
Conductivity	450	none	umhos/cm
TDS	269	500*	mg/l
Alkalinity	190	none	mg/l
Hardness	170	250*	mg/l
Color	10	15 *	C.U.
Odor	<1	3*	T.O.N.
Surfactants	< 0.05	0.5*	mg/l
Turbidity	2.1	5*	N.T.U.
Cyanide	< 0.01	0.2	mg/l
OH	<2.0	none	mg/l
CO3	<2.0	none	mg/l
HCO3	190	none	mg/l
Cl	6.8	250*	mg/l
F	0.44	4	mg/l
Nitrate			
(Nitrate+Nitrite)	1.3	10	mg/l
Sulfate	35	250*	mg/l
Ca	52	none	mg/l
Na	27	100*	mg/l
К	1.7	none	mg/l
Mg	11	none	mg/l
Al	< 0.02	.052*	mg/l
Sb	< 0.001	0.006	mg/l
As	< 0.001	0.01	mg/l
Ba	< 0.05	2	mg/l
Be	< 0.002	0.004	mg/l
Cd	< 0.002	0.005	mg/l
Cr	< 0.006	0.1	mg/l
Cu	< 0.006	1	mg/l
Fe	0.065	0.3*	mg/l
Pb	< 0.005	0.015	mg/l
U	0.02	0.03	mg/l
Mn	0.012	0.05*	mg/l
Hg	< 0.0002	0.002	mg/l
Ni	< 0.01	0.1	mg/l
Se	0.0018	0.05	mg/l
Ag	< 0.005	0.1*	mg/l
Tl	< 0.001	0.002	mg/l
Zn	Zn 0.071		mg/l

•
•

Objects in bold are above EPA Drinking Water Standards.

Notes: *secondary (aesthetic) standard, all others are primary (health related) EPA drinking water standards.

X. SUMMARY AND CONCLUSIONS

- 1. The proposed Type IV Beau Soleil Subdivision consists of 35 lots, each 10 acres or greater, and two common areas, on a total of 400 acres.
- 2. Covenants will limit water use to a maximum of 0.5 afa per lot. The total demand at full development of the proposed subdivision will be 17.5 afa.
- 3. Groundwater available beneath the proposed Beau Soleil Subdivision is more than sufficient in quantity and quality to meet the proposed subdivision demands.
- 4. The pumping test and analytical model results indicate that the aquifer beneath the property is capable of producing sufficient water to support the proposed subdivision at full demand for 50 years.
- 5. The pumping test data indicate that there were no hydrologic boundaries encountered during the test and that the aquifer penetrated by the test well has no significant barriers to groundwater flow in the near vicinity.
- 6. The test well on site at the proposed Beau Soleil Subdivision is completed to a total depth of 440 feet into unconfined alluvial deposits and fractured basalt with a static water level of 306 feet bgs.
- 7. The 2880-minute specific capacity in Well 5 is 0.8 gpm/ft at a production rate of 10.5 gpm, average transmissivity is 4851 gpd/ft (649 ft²/day), and average hydraulic conductivity is 6.49 ft/day, based on aquifer thickness of 100 feet penetrated by the completed well.
- Water quality analyses were performed and no primary or secondary EPA or NMWQCC MCL's are exceeded in Well RG-92910 discharge.
- 9. Long-term water level trends from the USGS groundwater monitoring well, site number 362246105395801, located southwest of the property, indicate a decline of approximately 0.21 feet/year, which the Beau Soleil test well is capable of absorbing over the next 50 years with ample water column still available.

XI. REFERENCES

- Baldridge, W.S., Olsen, K.H., and Callender, J.F., 1984, Rio Grande Rift: Problems andPerspectives, in New Mexico Geological Society Guidebook 35th Field Conference:Rio Grande Rift: Northern New Mexico, p. 1-12.
- Bauer, P.W., Johnson, P.S., and Kelson, K.I., 1999, Geology and Hydrogeology of the Southern Taos Valley, Taos County, New Mexico: Socorro, New Mexico Bureau of Geology and Mineral Resources, Final Technical Report to New Mexico Office of the State Engineer, 56 p., 4 plates.
- Bauer, P.W., and Kelson, K.I., 2004, Cenozoic structural development of the Taos area, New Mexico, in Brister, B.S., Bauer, P.W., Read, A.S., and Lueth, V.W., eds., New Mexico Geological Society Guidebook, 55th Field Conference, Geology of the Taos Region, 2004, p. 129-146.
- Coons, L.M., and Kelley, T.E., 1984, Regional Hydrogeology and the effect of structural control on the flow of groundwater in the Rio Grande trough, northern New Mexico, in New Mexico Geological Society Guidebook 35th Field Conference, Rio Grande Rift: Northern New Mexico, p. 241-244.
- Drakos, P., Lazarus, J., White, B., Banet, C., Hodgins, M., Riesterer, J., 2004, Hydrologic characteristics of basin-fill aquifers in the southern San Luis Basin, New Mexico, in Brister, B.S., Bauer, P.W., Read, A.S., and Lueth, V.W., New Mexico Geological Society Guidebook, 55th Field Conference, Geology of the Taos Region, 2004, p. 391-404.
- Dungan, M.A., Muehlberger, W.R., Leininger, L., Peterson, C., McMillan, N.J., Gunn, G. Lindstrom, M., and Haskin, L., 1984, Volcanic and sedimentary stratigraphy of the Rio Grande gorge and the late Cenozoic geologic evolution of the southern San Luis Valley, in New Mexico Geological Society Guidebook 35th Field Conference, Rio Grande Rift: Northern New Mexico, p. 157-170.

- Galusha, T., and Blick, J., 1971, Stratigraphy of the Santa Fe Group, New Mexico: Bulletin of the American Museum of Natural History, v. 144, Article 1.
- Johnson, P.S., Bauer, P.W., and Felix, B., 2009, Hydrogeologic Investigation of the Arroyo Hondo Area, Taos County, New Mexico, Final Technical Report Prepared for Taos County, Open-File Report 505, New Mexico Bureau of Geology & Mineral Resources
- Kelley, V.C., 1978, Geology of the Española Basin, New Mexico, New Mexico Bureau of Mines and Mineral Resources Geologic Map 48.
- Kelson, K.I., and S.G. Wells, 1989, Geologic Influences on Fluvial Hydrology and Bedload Transport in Small Mountainous Watersheds, Northern New Mexico, USA; Earth Surface Processes and Landforms, vol. 14, p. 671-690.
- Lipman, P. and H.T. Mehnert, 1979, The Taos Plateau Volcanic Field, Northern Rio Grande Rift, New Mexico, in Rio Grande Rift: Tectonics and Magmatism, American Geophysical Union, Washington, D.C.
- Rawling, G., 2005, Geology and hydrogeology of the Arroyo Seco Area, Taos County, New Mexico Final Technical Report, New Mexico Bureau of Geology and Mineral Resources, New Mexico Tech, Socorro, New Mexico, Open-file Report 492
- Roscoe Moss Company, 1990, Handbook of Groundwater Development, John Wiley and Sons, New York.
- Schafer, D.C., 1978, Casing storage can affect pumping test data, Johnson Drillers' Journal, Jan/Feb, Johnson Division, UOP Inc., St. Paul, Minnesota.

21

Spiegel, Z., and Baldwin, B., 1963, Geology and water resources of the Santa Fe area,

New Mexico: Geological Survey Water-Supply Paper 1525, 258 p.

Sterrett, R.J., 2007, <u>Groundwater and Wells</u>, Third Edition, Johnson Filtration Systems, Inc., St. Paul, Minnesota.

USEPA, 2003, http://www.epa.gov/safewater/mcl.html

Wilson, B.C., 1996, Water Conservation and Quantification of Water Demands in Subdivisions, A Guidance Manual for Public Officials and Developers, New Mexico Office of the State Engineer Technical Report 48.

FIGURES

JASON HALL WATER SOLUTIONS

FIGURE 1. Site location of Test Well, RG-92910, and proposed Beau Soleil Subdivision.

FIGURE 2. Geologic map with line of cross section A - A' - A" (Rawling, 2005) and RG-92910 well location identified.

APPENDIX I. DESCRIPTIONS OF GEOLOGIC MAP UNITS

Note: LR indicates description from or adapted from Lipman and Reed (1989).

Quaternary Surficial Deposits

- QHa, Q8 Arroyo alluvium, undivided (Holocene to Historic) Units are equivalent. Gravel and poorly to moderately sorted fine- to coarse-grained sand in active drainages. Bar and swale topography is well developed. Soils are very weakly developed.
- Qc Colluvium (Pleistocene to Holocene) Poorly lithified and stratified bouldery to sandy colluvium that obscures underlying bedrock. Exists in steep drainages within the Sange de Cristo Mountains.
- QI Landslide deposits (Pleistocene to Holocene) Lobate accumulations of poorly sorted soil and rock debris on slopes marked by hummocky topography and downslope-facing scarps. Derived from bedrock and glacial deposits, and includes small earthflow, block-slump, and block-slide deposits (LR).
- Qaf Alluvial fans (Pleistocene to Holocene) moderately to poorly sorted clay, silt, sand and gravel in low relief fans at the mouths of small tributary drainages.
- Qty Young stream terrace deposits (Pleistocene to Holocene) Poorly sorted silt, sand, pebbles, and boulders in low terraces along the Rio Lucero. Equivalent to unit Qt6 of Kelson (1986). (Unit description adapted from Bauer et al. (2001))
- Qt6, 7 Fluvial terraces (late (?) Pleistocene) Strath terrace treads along the Rio Hondo valley eroded on older Santa Fe Group sediments. Thin deposits composed of veneers of sand and gravel.

37

Group sediments. Composed of sand and gravel probably up to several meters thick south of the Rio Hondo.

Qfo – Older piedmont and fan deposits (earliest (?) Pleistocene) – Dissected piedmont and alluvial fan deposits along mountain front in the El Salto area. Field relations with Qtsfu are uncertain.

Quaternary and Tertiary Sedimentary Rocks

QTsfu – undivided Santa Fe Group sediments – (late Tertiary to Pleistocene (?)) –
Well-stratified clay, sand, and gravel deposited by streams and in alluvial fans.
Probably includes Blueberry Hill deposits of (Bauer et al., 2001). See sections IID and E for more detailed description.

Tertiary Igneous Rocks

- Td Cerro Negro dacite (late Miocene) Dark gray to black, extensively fractured two-pyroxene dacite flows and/or shallow intrusions. Age is 5.7 Ma (McIntosh et al., 2004).
- Tgy Lucero Peak Pluton (Miocene) White to pale pink, medium- to coarsegrained, equigranular granite to quartz monzonite.
- Tg Biotite granite (Oligocene) Granitic roof phase of the Rio Hondo pluton emplaced in the Questa caldera at about 26 Ma, during volcanism and caldera formation. Medium-grained and equigranular, with sparse aplite and no hornblende (LR).

- Q6 Undifferentiated alluvial fan and/or valley side-slope surface (late (?) Pleistocene) – Deposits mantling older Santa Fe Group sediments. Composed of sand
- Qsct Stream terrace deposits along San Cristobal Creek (middle to early (?)

and gravel up to a few meters thick

Pleistocene) - Poorly sorted silt, sand, pebbles, and boulders in low terraces along San Cristobal Creek. Appear to be higher in elevation and more stabilized by

vegetation than similar deposits along the Rio Lucero. Surface commonly disturbed by development.

- Qt5, 4 Fluvial terraces (middle (?) Pleistocene) Strath terrace treads along the Rio Hondo valley eroded on older Santa Fe Group sediments. Thin deposits composed of veneers of sand and gravel.
- Q4, 3 Undifferentiated alluvial fan and/or valley side-slope surfaces (middle to early (?) Pleistocene) – Deposits mantling older Santa Fe Group sediments. Composed of sand and gravel up to a few meters thick.
- Qt2 Fluvial terraces (middle to early (?) Pleistocene) Strath terrace treads along the Rio Hondo valley eroded on older Santa Fe Group sediments. Thin deposits composed of veneers of sand and gravel.
- Q2 Undifferentiated alluvial fan and/or valley side-slope surface (middle to early
 (?) Pleistocene) Deposits mantling older Santa Fe Group sediments. Composed of sand and gravel up to a few meters thick.
- Q1,Qfy Highest extensive geomorphic surface and associated piedmont deposits (early Pleistocene) – Units are probably equivalent. Deposits mantle older Santa Fe

- Tgd Rio Hondo Pluton (Oligocene) White to pale grayish-orange, medium- to finegrained, massive to locally foliated granodiorite. White to pale orange, aphaniticporphyritic border facies has quartz phenocrysts and local breccia. Has potassium feldspar phenocrysts up to 4 cm in size. Generally forms rounded outcrops with abundant grus.
- Ta Andesitic lava flows (Oligocene) Purplish-gray to gray, aphanitic to porphyritic andesite lava flows and flow breccias, with minor interbedded volcaniclastic sediments. Phenocrysts include plagioclase and hornblende.
- Tqi Latite and quartz latite (Miocene and Oligocene) Light tan to gray latite and quartz latite, often stained rust brown, with 15-30% phenocrysts of sanidine, pyroxene and/or hornblende, sparse quartz, and altered cubes of pyrite. Plagioclase phenocrysts to several centimeters in length are present. Occurs as dikes up to 20 m wide and elongate intrusive masses north of the Lawrence Ranch.
- Trp Porphyritic rhyolite (Miocene and Oligocene) White to light tan to light gray porphyritic rhyolite typically containing 5-20% phenocrysts of quartz, sandine, and sparse plagioclase and biotite. Occurs as dikes 1-10 m wide and local irregular and shallow intrusions (LR). Generally only observed as float.
- Tri Aphanitic rhyolite –(Miocene and Oligocene) Aphanitic to sparsely porphyritic rhyolite, otherwise similar to Trp.
- Tapi Porphyritic andesite and dacite (Miocene and Oligocene) Fine-grained dark gray aphanitic and porphyritic andesite and minor basalt. Where present, phenocrysts include hornblende, plagioclase, biotite, and little or no quartz or sanidine.

Tqk - Potassium feldspar quartz latite - (Miocene and Oligocene) - Coarsely

porphyritic, light-gray quartz latite containing potassium feldspar phenocrysts as long as 5 cm (LR).

- Trt Amalia Tuff (Oligocene) Pinkish-red, welded rhyolite tuff with fiamme to 5 cm in length. Contains abundant phenocrysts of quartz and sanidine, and volcanic lithic fragments.
- Tt Tuff of Tetilla Peak (Oligocene) Quartz-rich, light-colored, weakly welded, rhyolitic ash-flow tuff containing abundant small volcanic fragments. Contains 10-30% phenocrysts of quartz, sanidine, plagioclase and sparse chloritized biotite. Lithic fragments mostly andesite and quartz-bearing rhyolite (LR).

Proterozoic Igneous and Metamorphic Rocks

- Xd Diabase (early Paleozoic or late Proterozoic(?)) Nonfoliated, dark gray-green, medium- to fine-grained rocks with well preserved ophitic texture (LR).
- Xqc Quartz monzonite of Columbine Creek (early Proterozoic) White to gray to pale tan, moderately to strongly foliated quartz monzonite. Recrystallized to sugary textured, non foliated rock near Tertiary plutons. Age is 1730 Ma (Lipman and Reed, 1989).
- Xq Quartzite (early Proterozoic) White to gray, massive, vitreous quartzite with crossbeds defined by heavy mineral concentrations. Pervasively fractured into decimeter-scale, angular lozenges by joints, irregular fractures, and bedding.

- Xms Biotite muscovite schist and gneiss (early Proterozoic) Medium- to coarsegrained, thinly layered to massive, lustrous quartz mica schist and gneiss. Commonly contains sillimanite. Locally contains garnet, andalusite and cordierite (LR).
- Xfg Felsic gneiss (early Proterozoic) Pale gray to orange-brown, micaceous, weakly to moderately foliated, quartzofeldspathic gneiss locally grading to micaceous quartzite. Commonly interlayered with amphibolite and amphibole gneiss.
- Xa Amphibolite (early Proterozoic) Thinly layered to massive, fine- to coarsegrained, medium green to dark green to black amphibolite and amphibole gneiss. Locally contains calc-silicate gneiss, biotite-hornblende gneiss, felsic gneiss, and muscovite biotite schist (LR).

41

 \star = new ⁴⁰Ar/³⁹Ar radiometric age

FIGURE 4. Straigraphic chart for the Taos area, New Mexico (Bauer et al., 1999)

FIGURE 5. Potentiometric surface map of the Taos Valley shallow alluvial aquifer with gaining and losing stream reaches. (Drakos et al, 2004a) RG-92910 well location, groundwater flow direction in vicinity of the property, and hydraulic gradient identified.

APPENDIX A:

NMOSE Well Records: On-Site Well RG-92910 and Wells Within 1,000 feet of Property

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

SANTA FE NEW MEXICO

www.ose.state.nm.us

DATE 10 3 11

1	POD NUMBER (WELL NUMBER)			OSE FILE NUMBER(S)							
No	RG 92910					BG 92910					
ATI	WELL OWNER NAME(S)					PHONE (OPTIONAL)					
8	Jerom	e De Bor	ntin				1				
LE I	WELL OWN	WELL OWNER MAILING ADDRESS PO Box 1499					CITY		STATE		ZIP
WE	PO Bo						Ranchos	s de Taos	NM		87557
QN	WELL LOCATION LAT (FROM GPS)		E	DEGREES MINUTES SECONDS 36 30 35.80 N 105 37 0.40 W							
LA			TITUDE			* ACCURACY REQUIRED: ONE TENTH OF A SECOND					
ERA			NGITUDE			* DATUM REQUIRED: WGS 84					
SEN	DESCRIPT	ION RELATI	NG WELL LOCATION T	O STREET ADDRES	S AND COMMON LAND	MARKS					
1.6	Maripo	osa Ranc	h								
	(2.5 ACR	E)	(10 ACRE)	(40 ACRE)	(160 ACRE)	SECTION		TOWNSHIP	-	RANGE	
F	\$2 4	4	C 1/4	0 1/4	Q 1/4	1.			NORTH		EAST
NO	SUBDIVISIO	ON NAME			LOT NUMP		BLOCK NUMBER UNIT		UNIT/TRA	ACT WEST	
ILL	20.0					1.1					
2.0	HYDROGR	APHIC SURV	EX					MAP NUMBER		TRACT N	JMBER.
	LICENSE N	UMBER	NAME OF LICENSE	D DRILLER				NAME OF WELL DI	ULLING COM	PANY	
	WD 987 Jim Fennell				Fennell Drilling Co						
	DRILLING STARTED DRILLING ENDED DEPTH OF COMPLETED WELL (FT) B		BOREHOI	B DEPTH (FT) DEPTH WATER FIRST ENCOUNTERED (FT)							
N	8/22/	/2011	9/5/2011	440 44		440	321				
VIIC					STATIC WATER LEVEL IN COMPLETED WELL (FT)						
RM	COMPLETE	COMPLETED WELL IS: ARTESIAN		DRY HOLE SHALLOW (UNCONFINED)		306					
(FO	DRILLING I	FLUID:	AIR	MUD	ADDITIVES - SP	ECIFY:					
C D	DRILLING N	METHOD:	ROTARY	HAMMER	CABLE TOOL	OTHE	R - SPECIFY:				
TIN	DEPT	H (FT)	BORE HOLE	c	ASING	CONN	FCTION	INSIDE DIA	CASIN	WATE	TO IS
RIL	FROM TO		DIA. (IN)	MA	TERIAL	TYPE	(CASING)	CASING (IN)	THICKN	ESS (IN)	SIZE (IN)
3.1	0	25	10	1	steel	v	veld	6.125	0.1	88	
	25	440	8 3/4		steel	V	veld	6.125	0.1	88	
	330	430	8 3/4	perforated steel		V	veld	6.125	0.1	88	0.040
	DEPTI	H (FT)	THICKNESS	FO	RMATION DESCRI	PTION OF P	RINCIPAL W	ATER-BEARING S	TRATA		VIELD
YI	FROM	то	(FT)	(INCLUDE WATER-BEARING			CAVITIES OR FRACTURE ZONES) (GPM)				
IRA	309	325	16	sand & gravel 3/4 do				vn			5
C S]	325	355	30	gravel 1/4 to 1/2 with .30 to .250 thousands sand & gravel						5	
RIN	355	385	30	1/4 to 1/2 gravel with .30 to .250 thous				sands sand & gravel			5
BEAI	385	440	55	fractured basalt							3
ATER	METHOD U	SED TO ESTI	MATE YIELD OF WAT	ER-BEARING STRAT	A		-	TOTAL ESTIMATE	WELL YIFT	D (GPM)	
4. W.	5 horse	epower p	oump				18				
10.00											
	FOR OSE	INTERNA	LUSE					WELL RECO	RD & LOG	(Version 6	/9/08)
	FILE NUM	MBER			PODNIMB	FR		TON NUMPE	D		

FILE NUMBER	POD NUMBER	TRN NUMBER									
LOCATION		PAGE 1 OF 2									
UMP	TYPE OF PUMP:		TYPE OF PUMP:			E	CYLINDER	OTHER - SPECIFY:			
--------------------	----------------------------------	-------------------------------	---	---	--	---	--	---------------------------	------------------------	--	--
AND PI	ANN	TAR	DEPTH	I (FT) TO	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)	METH PLACE	METHOD OF PLACEMENT		
AL	SEAL	AND	40	440	8 3/4	1/4 down pea gravel	96	gravit	y pour		
S, SI	GRAVE	L PACK	PACK 0 40		10	bentonite seal	10	gravit	y pour		
	DEPT	H (FT)	тніск	NESS	co	DLOR AND TYPE OF MATERIAL ENCOUN	TERED	WA	TER		
	FROM	то	(FI	7	(INCLUD	E WATER-BEARING CAVITIES OR FRACT	URE ZONES)	BEAF	UNG?		
	0 30		30)	clay & cobbles						
	30	200	17	0	san	dy clay with small sand & gravel s	tringers	T YES	Ø N		
	200	260	60)		clay		TYES			
	260	309	49)		clay with small sand & gravel string	jers	T YES			
T	309	325	16	6		sand & gravel 3/4 down to 1/8		P YES			
VEL	325	335	10)	Sa	andy clay with sand stringers .30 to	.125	Z YES			
OF V	335	355	20)	1/4 t	1/4 to 1/2 sand & gravel .30 to .250 thousands					
00	355	365	10)	Sa	sandy clay with sand stringers .30 to .125					
CD	365	385	20)	1/4 to	o 1/2 gravel with .30 to .250 sand	& gravel	LIVES			
DO.	385	440	55	5		fractured basalt		E VES			
EOI								E ILS			
6. G											
								LI IES			
		-						I YES			
								LI YES			
								LI YES			
	-		-					U YES	D N		
ł		-		1 DDFTTON			2.1.2. 10.4. THE AL	U YES			
			АТТАСН	ADDITION	AL PAGES AS NEED	DED TO FULLY DESCRIBE THE GEOLOGI	C LOG OF THE WELL		_		
UEO	WELL	TEST	METHOD:	BAILE		AIR LIFT OTHER – SPECIFY:					
TIN			AND A TAB	LTS - ATTA LE SHOWN	CH A COPY OF DAT NG DISCHARGE AND	A COLLECTED DURING WELL TESTING, D DRAWDOWN OVER THE TESTING PERI	INCLUDING START 1 OD.	TME, END T	ME,		
7. TEST & ADDITION	ADDITION 5 horses See 48-1	AL STATEN DOWER PI	MENTS OR EXPLA UMP USED fo Mping test o	or testing data, atta	ched.						
8. SIGNATURE	THE UNI CORREC THE PER	DERSIGN T RECOR MIT HOL	ED HEREBY C D OF THE ABU DER WITHIN 2 2000 SIGNATUR	ERTIFIES T OVE DESCI 20 DAYS A ME OF DRILL	THAT, TO THE BEST RIBED HOLE AND THE PTER COMPLETION	OF HIS OR HER KNOWLEDGE AND BELI HAT HE OR SHE WILL FILE THIS WELL R OF WELL DRILLING: 9 - 30 - 2041DATE	EF, THE FOREGOING ECORD WITH THE ST	IS A TRUE A ATE ENGINI	ND EER AN		

FOR OSE INTERNAL USE	WELL RECORD & LOG (Version 6/9/08		
FILE NUMBER	POD NUMBER	TRN NUMBER	
LOCATION		PAGE 2 OF 2	

RG-92910 EXPLORATORY 2880-MINUTE PUMPING TEST: DRAWDOWN DATA

LOCATION: Arroyo Seco, Taos, NM NMOSE PERMIT NO: RG-92910 Exploratory WEIR: 3.0" with 1.0" orifice TOTAL DEPTH: 440 feet CASING TYPE: Steel, 0.188 Wall CASING DIAMETER: 6 5/8 inches OD STATIC WATER LEVEL: 308.3 JASON HALL WATER SOLUTIONS

PERFORATIONS: 330-430 feet bgs PUMP DEPTH: 420 feet bgs COLUMN PIPE DIA: 1 5/8 ID (2 3/8 OD) inches MP COR: -2.2 feet

DATE	TIME	ELAPSED TIME, t	WATER	DRAWDOWN, s	DISCHARGE,	Q/s	WEIR	BAROMETRIC	COMMENTS
· · · · · · · · ·		(min)	(feet)	(feet)	(gpm)	(gpm/ft)	(inches)	(mbar)	
9/21/11	9:00	0	308.30					779	
	1	1 1	325.07	16.77					discharge to surface, cloudy tan
		2	329.15	20.85	· · · · · · · · · · · · · · · · · · ·	17	20+	1	choking back with gate valve
P		3	327.69	19.39	1				shorting open ther gate faile
P		4	326.40	18.10	1				
	9:05	5	322.45	14.15		Par - 198 - 11	6.0		
		6	320.51	12.21	9.8	0.8	7.0	5	
		7	318.07	9.77	10.1	1.0	7.5	1.1	
-		8	318.11	9.81	10.5	1.1	8.0	1	28.7 sec/5 gal
	1	9	318.23	9.93	10.5	1.1	8.0	11	
1	9:10	10	318.35	10.05	10.5	1.0	8.0	1	
		15	318.45	10.15	10.5	1.0	8.0		
C	9:20	20	318.54	10.24	10.5	1.0	8.0		
		25	318.63	10.33	10.5	1.0	8.0	C	
	9:30	30	318.76	10.46	10.5	1.0	8.0	10	
	1200	35	318.90	10.60	10.5	1.0	8.0	12 million (1	
	9:40	40	319.03	10.73	10.5	1.0	8.0	11	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	45	319.21	10.91	10.5	1.0	8.0	1	1
	9:50	50	319.32	11.02	10.5	1.0	8.0	779.0	
		55	319.47	11.17	10.5	0.9	8.0	1/310	28.8 sec/5 gal
	10:00	60	319.58	11.28	10.5	0.9	8.0		
	10:10	70	319.88	11.58	10.5	0.9	8.0		
1	10:20	80	320.15	11.85	10.5	0.9	8.0		
· · · · · · · · · · · · · · · · · · ·	10:30	90	320.31	12.01	10.5	0.9	8.0		
1. Inc. 1.	10:40	100	320.45	12.15	10.5	0.9	8.0	778.0	28.7 sec/5 gal
	11:30	150	320.97	12.67	10.5	0.8	8.0	777.0	
	12:20	200	321.18	12.88	10.5	0.8	8.0	777.0	28.7 sec/5 gal
	13:10	250	321.31	13.01	10.5	0.8	8.0		Lott body o gut
P. C	14:00	300	321.40	13.10	10.5	0.8	8.0	778.0	
	14:50	350	321.51	13.21	10.5	0.8	8.0	778.0	
	15:40	400	321.57	13.27	10.2	0.8	7.8	11010	
	16:30	450	321.68	13.38	10.5	0.8	8.0		
	17:20	500	321.79	13.49	10.2	0.8	7.8	778.0	
	19:00	600	321.87	13.57	10.5	0.8	8.0	779	generator missing and smoking
	20:40	700	319,96	11.66	10.5	0.9	8.0		switched generators @ 650 min
	22:20	800	320.33	12.03	10.5	0.9	8.0		
Midnight	0:00	900	320.44	12.14	10.5	0.9	8.0		
9/22/11	1:40	1000	320.56	12.26	10.5	0.9	8.0	780	
S	5:50	1250	320.84	12.54	10.5	0.8	8.0	782	
	10:00	1500	321.07	12.77	10.5	0.8	80	102	
	18:20	2000	321.28	12.98	10.5	0.8	8.0		
9/23/11	2:40	2500	321.43	13.13	10.5	0.8	8.0	782	
	9:00	2880	321.56	13.26	10.5	0.8	80	782	
	9:00	2880	321.56	13.26	10.5	0.8	8.0	782	

RG-92910 2880-minute Pumping Test - Drawdown Average Q = 10.5 gpm 9/21 - 9/23/11

JASON HALL WATER SOLUTIONS

RG-92910 EXPLORATORY 2880-MINUTE PUMPING TEST: RECOVERY DATA

LOCATION: Arroyo Seco, Taos, NM NMOSE PERMIT NO: RG-92910 Exploratory WEIR: 3.0" with 1.0" orifice

TOTAL DEPTH: 440 feet CASING TYPE: Steel, 0.188 Wall CASING DIAMETER: 6 5/8 inches OD STATIC WATER LEVEL: 308.3 JASON HALL WATER SOLUTIONS

PERFORATIONS: 330-430 feet bgs PUMP DEPTH: 420 feet bgs COLUMN PIPE DIA: 1 5/8 ID (2 3/8 OD) inches MP COR: -2.2 feet

DATE	TIME	ELAPSED TIME, t (min)	RECOVERY TIME, t' (min)	WATER LEVEL (feet)	RESIDUAL DRAWDOWN, s' (feet)	t/ť	BAROMETRIC PRESSURE (lbs/in Hg)	COMMENTS
9/23/11	9:00	2880	0	321.56	13.26		782	
		2881	1	305.85	-2.45	2881		
		2882	2	300.17	-8.13	1441	1.000	
	1	2883	3	301.33	-6.97	961		
		2884	4	306.46	-1.84	721	1 · · · · · · · · · · · · · · · · · · ·	
	9:05	2885	5	307.87	-0.43	577		
	1.5	2886	6	308.41	0.11	481		
	·	2887	7	308.53	0.23	412		
		2888	8	308.54	0.24	361		
		2889	9	308.52	0.22	321		
	9:10	2890	10	308.52	0.22	289	782	
1	hand a start	2895	15	308.52	0.22	193		
	9:20	2900	20	308.49	0.19	145	-	
	E (2905	25	308.50	0.20	116		
1	9:30	2910	30	308.49	0.19	97		
	1	2915	35	308.49	0.19	83		
	9:40	2920	40	308.48	0.18	73	1	
		2925	45	308.48	0.18	65		
	9:50	2930	50	308.47	0.17	59	782	
	1-2-31	2935	55	308.47	0.17	53	1	
	10:00	2940	60	308.46	0.16	49		
	10:10	2950	70	308.46	0.16	42		
	10:20	2960	80	308.45	0.15	37		
	10:30	2970	90	308.45	0.15	33		
	10:40	2980	100	308.44	0.14	30	782	and the second sec
	11:30	3030	150	308.39	0.09	20	782	MPC top of sounder tube to top of
	12:20	3080	200	hard and a		15		permanent steel casing = $0.56'$

			н		•		98 SEI	evised Julie 19
			S	TATE ENGINE	ER OFFICE		P 28	,
	•			WELL RE	CORD		PH	
,			Section	I. GENERAL	INFORMATIC	И		
(A) Owner	of well Ma	ripsa /	Panehs Rox	50 holiniu 1980	on HC.	Own	er's Well No.	i Sm
Street City a	of Post Unice a	Prato	Nm	817529				
heli was dru	lled under Perm	it No. PC	6993	6	and is locat	ed in the:		
÷	¼	%%.	¼ of	Section	Township	Ra	inge	<u> </u>
s ira	ci No	of Map N	lo	• of il	he			
c. Lou	No	_ of Block No)	of th	ne			
Sub	ICC MAD	ied in	DOHOM	() (est)	N.M. Coordinat	e System Cen	tral	Zone
c.X≠ the	An to	_ leet, Y= =	eroux	leer, i				Crar
:5. Drillin	g Contractor	Fernell	Drille	& Co-		License No.	VD987	
A 001855	<u> PO-Re</u>	× 48	o Arn	ngo He	on la Ni	m87513		. 81
Drilling Bega	n B-15-9	8 Coi	mpleted L	-22-98	Type tools _	rotarg	Size of hol	8/4
Eleverion of	land surface or		•	at w	cll is	ft. Total depth	n of well	10
Completed w	ell is	shallow	artesian.		Depth to wate	er upon completior	n of well 32	0
		 	ection 2. PRI	NCIPAL WATF	R-BEARING S	STRATA	~	
Dept	h in Feel	Thickne	\$\$	Description of	Water-Bearing	Formation	Estimate (vallons pe	d Yield r minule)
HAND	To HI n	12					15	
500	160	00	<u>sa</u>	na gra	vel			
<u>200</u>	1220	20	<u>Sa</u>	nl Cla	stgrav		20	
560	600	70		nltg	have !		20	
		_l	Secti	an 3 RECORD	OFCASING		L	
Dismeter	Pounds	Threads	Depti	in Feet	Length	Type of Sho	Perforations	
(inches)	per lool	per in.	Тор	Bottom	(feet)		From	<u> </u>
618	15		0	610	610		-100	100
· · · · · · · · · · · · · · · · · · ·							\$ 00	520
	1	I		L	L	<u> </u>	560	600
Depuh	in Feet	Sect Hole	ion 4. RECO	RD OF MUDD	ING AND CEM	IENTING	d of Plana	
From	To	Diameter	of M	iud of	Cement	Sacti- a	F Pert-	+
O	20	5/4				Chips		····
	l				<u> </u>			
			Sectio	on S. PLUGGIN	G RECORD			
							······	
Segura Contr	actor				1 1	13aa46 (m. 1)	aal ^	and the second
ugging Contr toress	actor			······	No.	Top	ect C Bottom o	(Cement
Laging Contr oress Laging Metho Laging Plugg Laging appro	actor od ged ved by:				No.	Top	eet C Bottom o	Cement
Haging Contr Toress Haging Metho Tarine II Plugg Paging appro	aclor od ged ved by:	State Eng	ineer Repress	entative	No. 1 2 3 4		eet C Bottom O	u bic Feel (Cement
Laging Contr Coress Laging Aletho Lie in ell Plug Laging appro	actor dd ged ved by:	State Eng	ineer Repress	entative OF STATE ENG	No.	V = 685	eet C Bottom o	u bic Feel (Cement

Dr	rth in Feet	Thickness in Fee'	Color and Type of M thrial Encountered
0	25	25	brown class
25	340	315	sandy clas with some gravel
3.40	380	40	sandtgrave
380	400	20	clay
400	460	W	sand +gravel with clay stringers
460	500	40	a lant grave
500	520	20	Some toravel
530	560	40	clag with gravel stringers
560 .	100	40	sand +gravel
600	610	10	Clay
610	640	30	pasalt_
	 -		

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole,

· · .

Jim 7 Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well to

STATE ENGINEER OFFICE WELL RECORD

 $\left(-\right)$

MEEL MECOND

		Michael Vac	Section 1	GENERAL	INFORMATION	_	\mathcal{P}	6-8838
() Owner o Street or	t well	ddress P.O.	Box 1.320			Owner	's Well No	
City and	State	El Prado,	N.M. 87529				·····	
ll was drille	d under Permi	ι Νο RG-88	383		and is located	in the:		
a	½	Ya Ya	% of Se	ction	Township	Rang	2e	N.M.P.M
6 T		-634 - 34	2		Survey 3	-	,	
B. IFACI	NO	OI Map NO	·	01 ()	ne			
c. Lot N Subdi	lo	of Block No., din Taos		of th	County			
0001					county.		Central	
d. X= the	687615.0	feet, Y=2		feet, 1	N.M. Coordinate :	System		20ne in Grant
Drilling (Contractor	Vigil's V	<u>Veîl Drillir</u>	g		_ License No W	-523	
dress Pe). Box 142 R	anchos <u>De Ta</u> c	<u>15, N.M. 875</u>	57	<u></u>			
ill ing Beg an	9/8/06	Com	pleted <u>9/8/0</u>	6	Type tools	lotary	Size of hole.	7 7/8" in
vation of la	nd surface or .			at w	ell is	_ ft. Total depth of	of well 480	ft
						•	267	71 (1
mpleted we	ilis کوکست	shallow LJ :	artesian.	CIPAL WATE	Depth to water	RATA	or well <u>201</u>	
Depth	in Feet	Thickness	,]				Estimated	Yield
From	To	in Feet		Description of	t Water-Bearing F	ormation .	(gallons per	minute)
267	480'	213'		Brown Clay	& Gravel		1520	
				·····				
·	<u> </u>							
]						
			Sectio	n 3. RECORI	OF CASING			
Diameter	Pounds	Threads	Depth	in Feet	Length	Tune of Shoe	Perfo	orations
(inches)	per foot	per in.	Тор	Bottom	(feet)		From	<u> </u>
" PVC	SDR-17	Loc.	1'	480'	480'	None	360'	440'
	<u>†</u>	┼╼──┽			-{	<u> </u>	_	+
	L			l]	· · ·	<u>l</u>	
	<u>. </u>	Secti	on 4. RECOF	RD OF MUDI	DING AND CEMI	ENTING		<u> </u>
Depth From	In Feet To	_ Hole Diameter	Sack of Mi	s C	Cubic Feet	Method	of Placement	
		<u> </u>	+					
······			-+			<u></u>		
		·					<u>ي</u>	<u></u>
							17	\leq
	•			1			ເ ພ	1.172

Plugging Contractor					
Address	NI-	Depth	in Feet	- Cubic Fe	et
Plugging Method	NO.	Тор	Bottom	Un of Ceme	nt
Date Well Plugged	1	}			
Plugging approved by:	2				
	3				
TDAIH 21-765 State Engineer Representative	4				
1-101 201002					

FOR USE OF STATE ENGINEER ONLY

Date Received

Quad _____ FW

____ Location No.

File No.__

_ Use _

R6-88383

		······································	Section 6. LOG OF HOLE
Depth	in Feet	Thickness	Color and Type of Material Encountered
From	<u> </u>	in Feet	
<u> </u>	20'	20'	Brown Dirt, Caliche & Boulder
20'	<u>60'</u>	40'	Gravel
	140'	80'	Prown Clay & Gravel
140'	180'	40'	Gravel
180'	240'		Yellow Clay & Gravel
240'	300'	60'	Light Yellow Clay
	340'	40'	Light Brown Clay
340'	.380'	40'	Gravel
	420'	40'	Sand & Gravel
420'	460'	40'	Gravel
460'	480'	20'	Brown Clay & Gravel
·			
<u>L</u>			
		- <u> </u>	
<u> </u>			
<u></u>			
<u> </u>			
<u></u>			
<u> </u>			

.

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Drikler

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. Ψ_{-} this form is used as a plugging record, only S = on 1(a) and Section 5 need be completed.

						netwar		Revise	d June
			ST.	WELL REC	ORD	SANTA	OF STATE FE, NEW	ENGINEER MEXICO	}
			Section	I. GENERAL I	NFORMATION	2006 DE(21 PM	1 2: 25	
(A) Owner o	f well	Roger Eite	ljorg				r's Well N	o	
Street or City and	Post Office A State Ta	ddress1(<u>)9 Kit Ca</u> 37571	rson Rd.	<u></u>	·····	· · · · · · · · · · · · · · · · · · ·		
Well wee deille.	d un das Dami	t Nia – T	00405						
Wen was of the		· NOP	<u>G-00420</u>		and is located i	n the:			
a	¼	¼ ¼	¼ of \$	ection	Township	Rai	nge		N.M
b. Tract	No	of Map No)	of th	e		<u>`</u>		<u> </u>
c. Lot N	0,	of Block No.	·····	of th	·				
Subdi	visión, recorde	ed in <u> </u>)S		County.				
d. X≖ the	687,615	feet, Y=2	,005,682	Antonio M	.M. Coordinate S; artinez	ystem <u>Cent</u> r	cal		Zo
		Vicille							0
(B) Drilling (Contractor	VIGIT 2 M	e <u>li Dili</u> .		······	License No	WD-523		
Address	P.O. Bo	x 142 Ranc	hos De Ta	aos, NM 87	557				-n.
Drilling Began	12/5/06	Com	pleted 12/	/5/06	Type tools _ <u>Ro</u>	tary	Size c	of hole	7. ! !
Elevation of la	nd surface or .	- <u></u>	· <u> </u>	at we	ll is	_ ft. Total depth	of well	420'	
Completed web	া: তিইদত				D			1781	
Completed we		shallow L	artesian.	,	Depth to water u	ipon completion	of well	1/0	
Donth	in Faar	Se	ction 2. PRIN	ICIPAL WATE	R-BEARING STR	RATA	1		
From	То	in Feet	5	Description of	Water-Bearing Fo	rmation	Est (galle	imated Y ons per m	inute)
1791	4201	2421					25		
110	720			Grave			23	-50	
	1	1							
		·/			······		}		
	ι.						1		- <u></u>
	t.								
· · · · · · · · · · · · · · · · · · ·	(Sectio	on 3. RECORD	OF CASING				
Diameter (inches)	Pounds per foot	Threads per in.	Section Depth	on 3. RECORD in Feet	OF CASING Length (feet)	Type of Shc		Perfora	itions
Diameter (inches)	Pounds per foot	Threads per in. Eagle	Section Depth Top	on 3. RECORD in Feet Bottom	OF CASING Length (feet)	Type of Shc	se I	Perfora	itions Tc
Diameter (inches) 5" PVC ,	Pounds per foot SDR 17	Threads per in. Eagle loc.	Section Depth Top	on 3. RECORD in Feet Bottom 420'	OF CASING Length (feet) 420 '	Type of Sho None		Perfora From 201	ntions To 400
Diameter (inches) 5" PVC	Pounds per foot SDR 17	Threads per in. Eagle loc.	Sectic Depth Top 1 '	on 3. RECORD in Feet Bottom 420 '	OF CASING Length (feet) 420 '	Type of Sho None		Perfora From 201	itions To 400
Diameter (inches) 5" PVC	Pounds per foot SDR 17	Threads per in. Eagle loc.	Section Depth Top	on 3. RECORD in Feet Bottom 420'	OF CASING Length (feet) 420 '	Type of Sho None	se 1	Perfora From 201	itions To 400
Diameter (inches) 5" PVC	Pounds per foot SDR 17	Threads per in. Eagle loc.	Sectic Depth Top 1'	on 3. RECORD in Feet Bottom 420'	OF CASING Length (feet) 420 '	Type of Sho None		Perfora From 20 '	ations To 400
Diameter (inches) 5" PVC Depth	Pounds per foot SDR 17	Threads per in. Eagle loc. Secti Hole	Section Depth Top 1'	n 3. RECORD in Feet Bottom 420' RD OF MUDD ks C	OF CASING Length (feet) 420 *	Type of Sho None NTING Metho	be I	Perfora From 201	ations To 400
Diameter (inches) 5" PVC Depth From	Pounds per foot SDR 17 in Feet To	Threads per in. Eagle loc. Secti Hole Diameter	Section Depth Top 1 '	n 3. RECORD in Feet Bottom 420 ' RD OF MUDD ks Cr ud of	OF CASING Length (feet) 420 ' ING AND CEME Jbic Feet Cement	Type of Sho None NTING Metho	se II 3 od of Place	Perfora From 20 '	ations To 400
Diameter (inches) 5" PVC Depth From	Pounds per foot SDR 17	Threads per in. Eagle loc. Secti Hole Diameter	Sectic Depth Top 1'	n 3. RECORD in Feet Bottom 420 ' RD OF MUDD ks Cr ud of	OF CASING Length (feet) 420 ' ING AND CEME bbic Feet Cement	Type of Sho None NTING Metho	e H 3 od of Place	Perfora From 20 '	tions Tc 400
Diameter (inches) 5" PVC Depth From	Pounds per foot SDR 17 in Feet To	Threads per in. Eagle loc. Secti Hole Diameter	Section Depth Top	RD OF MUDD ks Ci ud of	OF CASING Length (feet) 420 ' ING AND CEME abic Feet Cement	Type of Sho None NTING Metho	se II 3 od of Place	Perfora From 20 1	tions To 400
Diameter (inches) 5" PVC Depth From	Pounds per foot SDR 17 in Feet To	Threads per in. Eagle loc. Secti Hole Diameter	Sectic Depth Top 1'	n 3. RECORD in Feet Bottom 420 ' RD OF MUDD ks Cr ud of	OF CASING Length (feet) 420'	Type of Sho None NTING Metho	e I 3 od of Place	Perfora From 20 '	tions Tc 400
Diameter (inches) 5" PVC Depth From	Pounds per foot SDR 17 in Feet To	Threads per in. Eagle loc. Secti Hole Diameter	Sectic Depth Top 1'	n 3. RECORD in Feet Bottom 420' RD OF MUDD ks Cr ud of	OF CASING Length (feet) 420 '	Type of Sho None NTING Metho	e I 3 od of Place	Perfora From 201	tions Tc 400
Diameter (inches) 5" PVC Depth From	Pounds per foot SDR 17 in Feet To	Threads per in. Eagle loc. Secti Hole Diameter	Section Depth Top 1'	on 3. RECORD in Feet Bottom 420 * RD OF MUDD ks Ch ud of vd of	OF CASING Length (feet) 420 ' ING AND CEME bic Feet Cement	Type of Sho None NTING Metho	se II 3 od of Place	Perfora From 20 '	<u>tions</u> <u>Tc</u> 400
Diameter (inches) 5" PVC Depth From	Pounds per foot SDR 17 in Feet To	Threads per in. Eagle loc. Secti Hole Diameter	Sectic Depth Top 1'	n 3. RECORD in Feet Bottom 420 ' RD OF MUDD ks Cr ud of on 5. PLUGGIN	OF CASING Length (feet) 420' ING AND CEME bbic Feet Cement	Type of Sho None NTING Metho	e Feet	Perfora From 20 '	400
Diameter (inches) 5" PVC Depth From Plugging Contr Address Plugging Metho	Pounds per foot SDR 17	Threads per in. Eagle loc. Secti Hole Diameter	Section Depth Top 1'	n 3. RECORD in Feet Bottom 420 ' RD OF MUDD ks Cr ud of on 5. PLUGGIN	OF CASING Length (feet) 420 ' ING AND CEME abic Feet Cement Cement	Type of Sho None NTING Metho	e I 3 od of Place	Perfora From 20 1 ment	400
Diameter (inches) 5" PVC Depth From Plugging Contr Address Plugging Metho Date Well Plugg Plugging appro	Pounds per foot SDR 17	Threads per in. Eagle loc. Secti Hole Diameter	Section Depth Top 1'	on 3. RECORD in Feet Bottom 420 ' RD OF MUDD ks Ch ud of on 5. PLUGGIN	OF CASING Length (feet) 420' ING AND CEME bic Feet Cement Cement IG RECORD I 1 2	Type of Sho None NTING Metho Depth in Top	e I 3 od of Place	Perfora From 20 ' ment	tions To 400
Diameter (inches) 5" PVC Depth From Plugging Contr Address Plugging Metho Date Well Plugg Plugging appro	Pounds per foot SDR 17	Threads per in. Eagle loc. Secti Hole Diameter	Section Depth Top 1'	on 3. RECORD in Feet Bottom 420 ' RD OF MUDD ks Cr ud of on 5. PLUGGIN	OF CASING Length (feet) 420' ING AND CEME bic Feet Cement Cement	Type of Sho None NTING Metho Depth in Top	e I 3 od of Place	Perfora From 20 '	tions Tc 400

File No. 166-88425 Use DOM Location No.	
---	--

111

		and the second se	
Depth	in Feet	Thickness	Color and Type of Material Encountered
Prom	10	in reet	
	20'	20'	Brown Dirt, Caliche & Boulder
20'	60 '	40'	Gravel
60'	140'	80'	Brown Clay & Gravel
140 '	220'	80'	Light. Brown. Clay
220 '	300 '	80'	Yellow Clay & Gravel
300'	340'	40'	Gravel
	380'	40'	Sand & Gravel
380'	420'	40'	Gravel
<u></u>			
<u></u>			
			}
	+		
. <u></u>		+	
·			
	ļ		
		·	
·	<u> </u>		

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Miller Dfiller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this c_{1} is used as a plugging record, only Section 1 (c_{1} is deciring 5 need be completed.

November 11, 2011

APPENDIX B:

RG-92910 48-hour Pumping Test Data and Graphs

RG-92910 EXPLORATORY 2880-MINUTE PUMPING TEST: DRAWDOWN DATA

LOCATION: Arroyo Seco, Taos, NM NMOSE PERMIT NO: RG-92910 Exploratory WEIR: 3.0" with 1.0" orifice TOTAL DEPTH: 440 feet CASING TYPE: Steel, 0.188 Wall CASING DIAMETER: 6 5/8 inches OD STATIC WATER LEVEL: 308.3

PERFORATIONS: 330-430 feet bgs PUMP DEPTH: 420 feet bgs COLUMN PIPE DIA: 1 5/8 ID (2 3/8 OD) inches 308.3 MP COR: -2.2 feet

DATE	ттме	ELAPSED	WATER		DISCHARGE,	0/6	WETD	BAROMETRIC	COMMENTS
DATE		TIME, t	LEVEL	DRAWDOWN, S	Q	Q/S	WEIR	PRESSURE	COMMENTS
		(min)	(feet)	(feet)	(gpm)	(gpm/ft)	(inches)	(mbar)	
9/21/11	9:00	0	308.30					779	
		1	325.07	16.77					discharge to surface, cloudy tan
		2	329.15	20.85			20+		choking back with gate valve
		3	327.69	19.39					
		4	326.40	18.10					
	9:05	5	322.45	14.15			6.0		
		6	320.51	12.21	9.8	0.8	7.0		
		7	318.07	9.77	10.1	1.0	7.5		
		8	318.11	9.81	10.5	1.1	8.0		28.7 sec/5 gal
		9	318.23	9.93	10.5	1.1	8.0		
	9:10	10	318.35	10.05	10.5	1.0	8.0		
		15	318.45	10.15	10.5	1.0	8.0		
	9:20	20	318.54	10.24	10.5	1.0	8.0		
		25	318.63	10.33	10.5	1.0	8.0		
	9:30	30	318.76	10.46	10.5	1.0	8.0		
	5.00	35	318.90	10.60	10.5	1.0	8.0		
	9.40	40	319.03	10.73	10.5	1.0	8.0		
	5110	45	319 21	10.91	10.5	1.0	8.0		
	9.50	50	319 32	11 02	10.5	1.0	8.0	779.0	
	5150	55	319.47	11.02	10.5	0.9	8.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	28.8 sec/5 gal
	10.00	60	319 58	11.28	10.5	0.9	8.0		20:0 300/5 gui
	10.00	70	319.88	11.20	10.5	0.9	8.0		
	10.10	80	320.15	11.55	10.5	0.5	8.0		
	10.20	90	320.13	12.01	10.5	0.5	8.0		
	10:30	100	320.31	12.01	10.5	0.5	8.0	778.0	28.7 sec/5 gal
	11.30	150	320.13	12.13	10.5	0.5	8.0	777.0	20.7 Sec75 gui
	12.20	200	321.18	12.07	10.5	0.0	8.0	777.0	28.7 sec/5 gal
	13.10	250	321.10	13.01	10.5	0.0	8.0	///.0	20.7 Sec/5 gai
	14.00	300	321.01	13.01	10.5	0.0	8.0	778.0	
	14.50	350	321.10	13.10	10.5	0.0	8.0	778.0	
	15.40	400	321.51	13.21	10.5	0.0	7.8	770.0	
	16:30	450	321.57	13 38	10.2	0.0	8.0		
	17.20	500	321.00	13.50	10.3	0.0	7.8	778.0	
	10.00	600	321.75	13.57	10.2	0.0	8.0	770.0	generator missing and smoking
	20.40	700	310.06	11.66	10.5	0.0	8.0	115	switched generators @ 650 min
	20.70	800	320.33	12.03	10.5	0.9	<u> </u>		
Midnight	0.00	900	320.33	12.05	10.5	0.9	<u> </u>		
	1.40	900	320.44	12.14	10.5	0.9	0.0	700	
9/22/11	1:40	1000	320.50	12.20	10.5	0.9	0.0	700	
	10.00	1200	320.84	12.54	10.5	0.0	0.0	/82	
	10:00	12000	321.07	12.//	10.5	0.8	0.0		
0/00/11/	18:20	2000	321.28	12.98	10.5	0.8	8.0		
9/23/11	2:40	2500	321.43	13.13	10.5	0.8	8.0	782	
	9:00	2880	321.56	13.26	10.5	0.8	8.0	782	

RG-92910 2880-minute Pumping Test - Drawdown Average Q = 10.5 gpm 9/21 - 9/23/11

JASON HALL WATER SOLUTIONS

RG-92910 EXPLORATORY 2880-MINUTE PUMPING TEST: RECOVERY DATA

LOCATION: Arroyo Seco, Taos, NM NMOSE PERMIT NO: RG-92910 Exploratory WEIR: 3.0" with 1.0" orifice TOTAL DEPTH: 440 feet CASING TYPE: Steel, 0.188 Wall CASING DIAMETER: 6 5/8 inches OD STATIC WATER LEVEL: 308.3

PERFORATIONS: 330-430 feet bgs PUMP DEPTH: 420 feet bgs es OD COLUMN PIPE DIA: 1 5/8 ID (2 3/8 OD) inches 308.3 MP COR: -2.2 feet

DATE	TIME	ELAPSED TIME, t	RECOVERY TIME, t'	WATER LEVEL	RESIDUAL DRAWDOWN, s'	t/t'	BAROMETRIC PRESSURE	COMMENTS
		(min)	(min)	(feet)	(feet)		(lbs/in Hg)	
9/23/11	9:00	2880	0	321.56	13.26		782	
		2881	1	305.85	-2.45	2881		
		2882	2	300.17	-8.13	1441		
		2883	3	301.33	-6.97	961		
		2884	4	306.46	-1.84	721		
	9:05	2885	5	307.87	-0.43	577		
		2886	6	308.41	0.11	481		
		2887	7	308.53	0.23	412		
		2888	8	308.54	0.24	361		
		2889	9	308.52	0.22	321		
	9:10	2890	10	308.52	0.22	289	782	
		2895	15	308.52	0.22	193		
	9:20	2900	20	308.49	0.19	145		
		2905	25	308.50	0.20	116		
	9:30	2910	30	308.49	0.19	97		
		2915	35	308.49	0.19	83		
	9:40	2920	40	308.48	0.18	73		
		2925	45	308.48	0.18	65		
	9:50	2930	50	308.47	0.17	59	782	
		2935	55	308.47	0.17	53		
	10:00	2940	60	308.46	0.16	49		
	10:10	2950	70	308.46	0.16	42		
	10:20	2960	80	308.45	0.15	37		
	10:30	2970	90	308.45	0.15	33		
	10:40	2980	100	308.44	0.14	30	782	
	11:30	3030	150	308.39	0.09	20	782	MPC top of sounder tube to top of
	12:20	3080	200			15		permanent steel casing = 0.56'

RG-92910 2880-minute Pumping Test - Recovery

Average Q = 10.5 gpm 9/23/11

CASING STORAGE CALCULATION FOR BONNE TERRE WELL RG-92910: 2880-minute Pumping Test

iteration	d _c (inches)	d _p (inches)	s (feet)	Q (gpm)	Q/s (gpm/ft)	$t_c = [0.6 (d_c^2 - d_p^2)] / (Q/s)$
1	6.25	2.5	9.77	10.5	1.074718526	18.31875
2	6.25	2.5	10.21	10.5	1.028403526	19.14375
3	6.25	2.5	10.23	10.5	1.026392962	19.18125
4	6.25	2.5	10.24	10.5	1.025390625	19.2
5	6.25	2.5	10.24	10.5	1.025390625	19.2

CASING STORAGE ENDS AFTER ~ 19 MINUTES OF PUMPING

- time, in minutes, when casing storage effect becomes negligible inside diameter of well casing, in inches tc
- dc
- dp
- outside diameter of pump column pipe, in inches specific capacity of the wel in gpm/ft of drawdown at time tc Q/s

November 11, 2011

APPENDIX C:

TH96S Model Results

 $\begin{array}{rcl} & & BT \ TH96S \\ DRAWDOWN \ AT \ RANDOM \ COORDINATES \ IN \ AN \ INFINITE \\ STRIP, \ NON \ - \ LEAKY \ AQUIFER \ USER \ SPECIFIED \ BOUNDARIES \\ AT \ Y \ = \ O \ AND \ A \ Y \ SPECIFIED \ BY \ USER \\ PUMPING \ MULTIPLE \ WELLS \ LOCATED \ AT \ POINTS \ SPECIFIED \\ BY \ USER. \ EACH \ WELL \ MAY \ HAVE \ A \ DIFFERENT \\ PUMPING \ SCHEDULE. \ ALL \ COORDINATES \ IN \ THE \ X \ - \ Y \ PLANE. \end{array}$

(Theis equation)

At y = 0, there is no boundary There is no other boundary to system

T = 4851. gpd/ft S = 0.100000

Number of pumping wells = 5

Coordinates of pumping wells and the no. of pumping rates

Well #	X Coordinate	Y Coordinate	No. of Pumping Rates
1	0.0	0.0	1
2	344.0	0.0	1
3	587.0	0.0	1
4	649.0	0.0	1
5	650. 0	0.0	1

PUMPING SCHEDULES FOR THE WELLS

Well Schedule for	Pumping Well Number 1
Pumping Rate	Pumping Time
Q(1) = 10.8 gpm	for 18250.000 days
Well Schedule for	Pumping Well Number 2
Pumping Rate	Pumping Time
Q(1) = 1.9 gpm	for 18250.000 days
Well Schedule for	Pumping Well Number 3
Pumping Rate	Pumping Time
Q(1) = 1.9 gpm	for 18250.000 days
Well Schedule for	Pumping Well Number 4
Pumping Rate	Pumping Time
Q(1) = 0.6 gpm	for 18250.000 days
Well Schedule for	Pumping Well Number 5
Pumping Rate	Pumping Time
Q(1) = 0.6 gpm	for 18250.000 days Page 1

BT TH96S

Coordinates of Computation Points									
(Number of computation points = 5)									
Point #	X Co	ordi nates feet		Y Coord fee	di nates et				
1 2 3 4 5		0.5 344.5 587.5 649.5 650.5			0.0 0.0 0.0 0.0 0.0 0.0				
	Image	Control =	. 100000	0E-04					
	time va	riable (t)							
	t min = 365	0.000 days; delta t	= 3650	t max = .000 days	18250.000	days;			
	******	**** RESULT	S *****	* * * * * * * * *					
I	Drawdowns an M	d Coordinat easured in	es of c feet	omputati on	poi nts				
Time in	X = Y = days	0.5 0.0	X = Y =	344. 5 0. 0	X = Y =	587.5 0.0			
3650. (7300. (10950. (14600. (18250. (000 000 000 000 000	5.530 5.788 5.940 6.047 6.130		2.904 3.162 3.314 3.421 3.504	2 2 3 3 3 3	. 722 . 980 . 131 . 239 . 322			
	* * * * * * * * *	**** RESULT	S *****	* * * * * * * * *					
I	Drawdowns an M	d Coordinat easured in	es of c feet	omputati on	poi nts				
Time in	X = Y = days	649. 5 0. 0	X = Y =	650. 5 0. 0					
3650.0 7300.0 10950.0 14600.0 18250.0	000 000 000 000 000	2. 491 2. 749 2. 900 3. 007 3. 090		2. 457 2. 715 2. 866 2. 973 3. 057					

November 11, 2011

APPENDIX D:

Glover-Balmer Model Results

TIME and DATE month: 10 day: 21 year: 2 hour: 13 minute: 12 second: 51 month: 10 2011 STREAM DEPLETION CAUSED BY PUMPING MULTIPLE WELLS AT VARIOUS RATES IN AN INFINITE - STRIP, NON - LEAKY AQUIFER. THE WELLS ARE BETWEEN THE STREAM AND A PLANE BOUNDARY. (Glover and Balmer equation) 649. S = . 100000 T = square ft/day Number of wells = 1 Distance from stream to plane boundary = 10.00 miles Distances of the wells from the stream and the number of pumping rates Well # Distance (miles) No. of rates 1 5.75 1 PUMPING SCHEDULES FOR THE WELLS Pumping schedule for well number 1 Pumping rate Pumping time Q(1) =50.000 years 17.5 ac-ft/yr for Image Control = .1000000E-04 Time variable (t) Only 500 timesteps allowed 5.000 years; t max t min = t max = 50.000 years; Accumul ated Depl eti on Rate of Volume in Depletion Time Depl eti on Vol ume Time Period (years) (acre-feet) (acre-feet) (ac-ft/yr) 5.000 . 000000 . 000000 . 000000 10.000 . 000181 . 000151 . 000151 . 005565 15.000 . 009605 . 009454 20.000 . 090927 . 081322 . 031881 25.000 . 092615 . 295565 . 386492 30.000 . 190849 1.080023 . 693531 . 322522 35.000 2.350844 1.270821 1.998869 . 480880 4.349714 40.000 45.000 50.000 . 659013 7.192547 2.842833

10.962685

Page 1

3.770138

. 850891

BT G-B

November 11, 2011

APPENDIX E:

USGS Historic Water Level Data

National Water Information System: Web Interface

USGS Water Resources

News updated July, 2011

Groundwater levels for New Mexico

Search Results -- 1 sites found

Search Criteria

Agency code = usgs

site no list =

• 362246105395801

Explanation

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 362246105395801 25N.12E.21.434

Taos County, New Mexico

Latitude 36°21'52.7", Longitude 105°47'57.1" NAD83 Land-surface elevation 6,870 feet above NGVD29 The depth of the well is 530 feet below land surface. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

USGS Home Contact USGS Search USGS

Data Category:	Geographic Area:	
Groundwater 🛟	New Mexico	GO

Output formats	

Tab-separated data

Graph of data

Table of data

Reselect period

Date	Time	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	2 Status	Measuring Agency	Date Time		Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	2 Status	Measuring Agency
1983-02-01		16.32					1989-08-03		40.40				
1988-03-16		39.94					1993-01-25		39.95				
1988-10-14		35.37					1998-03-05		37.38				
1989-05-11		39.98					2003-03-11		38.38				USGS
							2004-03-10	16:39 MST	38.62				USGS

Section	Code	Description
Status		The reported water-level measurement represents a static level
Measuring Agency		Not determined
Measuring Agency	USGS	US GEOLOGICAL SURVEY

-

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes <u>News</u>

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels

URL: http://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2011-10-18 16:32:29 EDT 0.31 0.31 nadww01

November 11, 2011

APPENDIX F:

RG-92910 Laboratory Water Quality Report

COVER LETTER

Tuesday, October 18, 2011

Jason Hall Water Solutions 1408 Seville Rd Santa Fe, NM 87505

TEL: (505) 699-1112 FAX

RE: Debontin RG-92910

Dear Jason Hall:

Order No.: 1109882

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 9/23/2011 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued October 14, 2011

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

> 4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	Water Solutions		-	Client Sample ID:	Ra-92910	
Lab Order:	1109882			Collection Date:	9/23/2011	8:40:00 AM
Project:	Debontin RG-92910			Date Received:	9/23/2011	
Lab ID:	1109882-01			Matrix:	AQUEOU	S
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS					Analyst: LJB
Fluoride		0.44	0.10	mg/L	1	9/26/2011 2:22:41 PM
Chloride		6.8	0.50	mg/L	1	9/26/2011 2:22:41 PM
Nitrate (As N)+N	Nitrite (As N)	1.3	1.0	mg/L	5	9/28/2011 7:03:32 AM
Sulfate		35	0.50	mg/L	1	9/26/2011 2:22:41 PM
EPA METHOD	200.7: DISSOLVED META	ALS				Analyst: RAGS
Aluminum		ND	0.020	mg/L	1	9/29/2011 3:49:31 PM
Barium		0.050	0.0020	mg/L	1	9/29/2011 3:49:31 PM
Beryllium		ND	0.0020	mg/L	1	9/29/2011 3:49:31 PM
Cadmium		ND	0.0020	mg/L	1	9/29/2011 3:49:31 PM
Calcium		52	1.0	mg/L	1	9/29/2011 3:49:31 PM
Copper		ND	0.0060	mg/L	1	9/29/2011 3:49:31 PM
Iron		0.065	0.020	mg/L	1	9/29/2011 3:49:31 PM
Lead		ND	0.0050	mg/L	1	9/29/2011 3:49:31 PM
Magnesium	,	11	1.0	mg/L	1	9/29/2011 3:49:31 PM
Manganese		0.012	0.0020	mg/L	1	9/29/2011 3:49:31 PM
Nickel		ND	0.010	mg/L	1	9/29/2011 3:49:31 PM
Potassium		1.7	1.0	mg/L	1	9/29/2011 3:49:31 PM
Silver		ND	0.0050	mg/L	1	9/29/2011 3:49:31 PM
Sodium		27	1.0	mg/L	1	9/29/2011 3:49:31 PM
Zinc		0.071	0.010	mg/L	1	9/29/2011 3:49:31 PM
EPA METHOD 2	200.7: METALS					Analyst: RAGS
Calcium		50	1.0	mg/L	1	9/29/2011 4:53:43 PM
Chromium		ND	0.0060	mg/L	1	9/29/2011 4:53:43 PM
Magnesium		11	1.0	mg/L	1	9/29/2011 4:53:43 PM
EPA 200.8: DIS	SOLVED METALS					Analyst: SNV
Antimony		ND	0.0010	mg/L	1	10/4/2011 11:13:33 AM
Arsenic		ND	0.0010	mg/L	1	10/4/2011 11:13:33 AM
Selenium		0.0018	0.0010	mg/L	1	10/4/2011 11:13:33 AM
Thallium		ND	0.0010	mg/L	1	10/7/2011 3:38:56 PM
Uranium		0.020	0.0010	mg/L	1	10/7/2011 3:38:56 PM
EPA METHOD 2	45.1: MERCURY					Analyst: BRM
Mercury		ND	0.00020	mg/L	1	9/28/2011 12:01:54 PM
	-					
EPA 200.7: HAR	DNESS	·				Analyst: RAGS
Hardness (As Ca	ICO3)	170	1.0	mg/L	1	9/29/2011

Hall Environmental Analysis Laboratory, Inc.

Date: 18-Oct-11 Analytical Report

Qualifiers:

* Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 18-Oct-11 Analytical Report

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Water Solutions			Clier	nt Sample ID:	Ra-92910)		
Lab Order:	1109882	Collection Date: 9					9/23/2011 8:40:00 AM		
Project: Debontin RG-929				D	ate Received:	9/23/20 1	1		
Lab ID:	1109882-01				Matrix:	AQUEOUS			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed		
SM 2320B: AL	KALINITY	·····					Analyst: LJB		
Alkalinity, Total	(As CaCO3)	190	20		mg/L CaCO3	1	9/26/2011 7:24:00 PM		
Carbonate		ND	2.0		mg/L CaCO3	1	9/26/2011 7:24:00 PM		
Bicarbonate		190	20		mg/L CaCO3	1	9/26/2011 7:24:00 PM		
Hydroxide		ND	2.0		mg/L CaCO3	1	9/26/2011 7:24:00 PM		
FPA 120.1: SP	ECIFIC CONDUCTANCE						Analyst: LJB		
Specific Condu	ctance	450	0.010		µmhos/cm	1	9/26/2011 7:24:00 PM		
SM4500-H+B·1	РН						Analyst: LJB		
pH		8.02	0.100	н	pH units	1	9/26/2011 7:24:00 PM		
SM2540C MOD	: TOTAL DISSOLVED SO	LIDS					Analyst: KS		
Total Dissolved	Solids	269	20.0		mg/L	1	9/30/2011 11:28:00 AM		
	180.1: TURBIDITY						Analyst: KS		
Turbidity		2.1	0.50	н	NTU	1	9/26/2011 2:56:00 PM		

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Anatek Labs, Inc.

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fex (208) 882-9248 · email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client: Address:	HALL ENVIRONMENTAL ANALYSIS LAB 4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109	Batch #: Project Name:	110927033 1109882	
Atin:	ANDY FREEMAN			

Analytical Results Report

Sample Number Client Sample ID Matrix Commente	110927033-001 1109862-01C / RA-92910 Water		Sampling Date Sampling Time	9/ 8:	23/2011 De 40 AM	ite/Time Rec	əlvəd	0/27/2011	12:36 PM
Doromater		Result	Unite	PQL	Analysia Date	Analyst	Met	nod	Qualifier
Cyanide		ND	mg/L	0.01	10/5/2011	CRW	EPA (335.4	

Sample Number Cilent Sample iD Matrix Comments	110927033-002 1109882-01E / RA-92910 Water		Sampling Date Sampling Time	9/23/2011 8:40 AM		Date/Time Received		9/27/2011	12:36 PM	
Desemptor		Result	Units	PQL	Analysis Da	te Analyst	Me	thod	Qualifier	
Parameter		40	Color Lipite	5	9/28/2011	KFG	SM 2	2120B		
Color		10		4	0/08/0011	KEG	SM:	2150B		
Odor		ND	TON	1	9/20/2011	N/O				

Certifications held by Analek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E07603; ID:ID00013; IN:C-ID-01; KY:B0142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Analek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C685; MT:Cert0095

Thursday, October 13, 2011

Anatek Labs, Inc.

1282 Alturas Drive · Moscow, ID 83843 · (208) 683-2839 · Fax (208) 882-9246 · email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokene WA 99202 • (509) 638-3999 • Fax (509) 838-4433 • email spokane@anatekiabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	110927033
Address:	4901 HAWKINS NE SUITE D	Project Name:	1109882
Attn:	ALBUQUERQUE, NM 87109 ANDY FREEMAN		

Analytical Results Report

										-
Sample Number Cilent Sample ID Matrix	110927033-003 1109882-01F / RA-92910 Water		Sampling Date Sampling Time	9. 8	/23/2011 D :40 AM	ate/Time Rec	elved	9/27/2011	12:36 PM	
Commente										
Parameter		Result	Unite	PQL	Analysis Date	Analyst	Met	hod	Qualifier	
MBAS	//	ND	mg/L	0.05	10/12/2011	CRW	SM5	540C		

Authorized Signature

MBAS

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

Not Detected ND

Practical Quantitation Limit PQL

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soli/solid results are reported on a dry-weight basis unless otherwise noted.

Centifications held by Analek Labs ID: EPA:ID00013; AZ:0701; CC:ID00013; FL(NELAP):E67693; ID:ID00013; IN:C-ID-01; KY:80142; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Centifications held by Analek Labs WA: EPA:WA00169; CA:Cert2632; ID:WA00169; WA:C585; MT:Cent0085

Thursday, October 13, 2011

Client: Project:	Water Sol Debontin J	utions RG-92910								Work	Order:	1109882
Analvte		Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	owLimit Hig	jhLimit	%RPD	RPDLimit	Qual
					!		•••••					
Method: Sample ID:	EPA Method 200.7: MB-28619	Metals	MRI K				Batch ID:	28619	Analys	sis Date:	9/29/2011	3:26:54 PM
Out-bury		ND	mail	1.0					·			
Calcium			mg/L	0.0060								
Chromium			mg/⊑	1.0								
Nagriesium OIo ID:	MD	ND	MDLK	1.0			Batch ID [.]	R48070	Analys	is Date:	9/29/2011	3:20:23 PM
Sample ID:							Baton ib.	1140070	7 and 19 a		0,20.201	•••
Aluminum		ND	mg/L	0.020								
Barium		ND	mg/L	0.0020								
Beryllium		ND	mg/L	0.0020								
Cadmium		ND	mg/L	0.0020								
Calcium		ND	mg/L	1.0								
Copper		ND	mg/L	0.0060								
Iron		ND	mg/L	0.020								
Lead		ND	mg/L	0.0050						÷		
Magnesium		ND	mg/L	1.0								
Manganese		ND	mġ/L	0.0020								
Nickel		ND	mg/L	0.010								
Potassium		ND	mg/∟	1.0								
Silver		ND	mg/L	0.0050								
Sodium		ND	mg/L	1.0								
		ND	mg/L	0.010			Potob ID:	20610	Analys	vic Date:	0/20/2011	3-30-16 PM
Sample ID:	LCS-28619		LCS				baton iD.	20019	Analya		3/23/2011	0.00.101 M
Calcium		51.02	mg/L	1.0	50	0	102	85	115			
Chromium		0.4757	mġ/L	0.0060	0.5	0	95.1	85	115			
Magnesium		51.09	mg/L	1.0	50	0.0047	102	85	115		0.00.0044	0 00.54 DN
Sample ID:	LCS		LCS	÷			Batch ID:	R48070	Analys	sis Date:	9/29/2011	3:23:51 PM
Aluminum		0.5054	mg/L	0.020	0.5	0	101	85	115			
Barium		0.4 8 30	mg/L	0.0020	0.5	0	96.6	85	115			
Beryllium		0.4908	mg/L	0.0020	0.5	0	9 8 .2	85	115			
Cadmium		0.4884	mg/L	0.0020	0.5	0	97.7	85	115			
Calcium		48.80	mg/L	1.0	50	0	97.6	85	115			
Copper		0.4886	mg/L	0.0060	0.5	0	97.7	85	115			
Iron		0.4744	mg/L	0.020	0.5	0	94.9	85	115			
Lead		0.4864	mg/L	0.0050	0.5	0	97.3	85	115			
Magnesium		48.78	mg/L	1.0	50	0	97.6	85	115			
Manganese		0.4697	mg/L	0.0020	0.5	0	93. 9	85	115			
Nickel		0.4598	mg/L	0.010	0.5	0	92.0	85	115			
Potassium		47.42	mg/L	1.0	50	0	94.8	85	115			
Silver		0.09733	mg/L	0.0050	0.1	0	97.3	85	115			
Sodium		47.70	mg/L	1.0	50	0	95.4	85	115			
Zinc		0.4749	mg/L	0.010	0.5	0	95.0	85	115			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

5

R

RPD outside accepted recovery limits

Page 1

Date: 18-Oct-11

•

Dat

Client: Project:	Water Solution Debontin RG	ons -92910								Work	Order:	1109882
Analyte		Result	Units	PQL	SPK Va S	SPK ref	%Rec Lo	owLimit Hig	jhLimit	%RPD	RPDLimit	Qual
Method:	EPA Method 200.7: Dis	solved Met	als							. Data	010010044	0.00.00 DM
Sample ID:	MB		MBLK				Batch ID:	R48070	Anaiys	is Date:	9/29/2011	5:20:25 PIVI
Aluminum		ND	mg/L	0.020								
Barium		ND	mg/L	0.0020								
Beryllium		ND	mg/L	0.0020								
Cadmium		ND	mg/L	0.0020								
Calcium		ND	mg/L	1.0								
Copper		ND	mg/L	0.0060								•
Iron		ND	mg/L	0.020								
Lead		ND	mg/L	0.0050								
Magnesium		ND	mg/L	1.0								
Manganese		ND	mg/L	0.0020								
Nickel		ND	mg/L	0.010								
Potassium		ND	mg/L	1.0								
Silver		ND	mg/L	0.0050								
Sodium		ND	mg/L	1.0								
Zinc		ND	mg/L	0.010								
Sample ID:	LCS		LCS				Batch ID:	R48070	Analys	is Date:	9/29/2011	3:23:51 PM
Aluminum		0.5054	mg/L	0.020	0.5	0	101	85	115			
Barium		0.4830	mg/L	0.0020	0.5	0	96.6	85	115			
Beryllium		0.4908	mg/L	0.0020	0.5	0	98.2	85	115			
Cadmium		0.4884	mg/L	0.0020	0.5	0	97.7	85	115			
Calcium		48.80	mg/L	1.0	50	0	97.6	85	115			
Copper		0.4886	mg/L	0.0060	0.5	0	97. 7	85	115			
iron		0.4744	mg/L	0.020	0.5	0	94.9	85	115			
Lead		0.4864	mg/L	0.0050	0.5	0	97.3	85	115			
Magnesium		48.78	mg/L	1.0	50	0	97.6	85	115			
Manganese		0.4697	mg/L	0.0020	0.5	0	93.9	85	115			
Nickel		0.4598	mg/L	0.010	0.5	0	92.0	85	115			
Potassium		47.42	mg/L	1.0	50	0	94.8	85	115			
Silver		0.09733	mg/L	0.0050	0.1	0	97.3	85	115			
Sodium		47.70	mg/L	1.0	50	0	95.4	85	115			
Zinc		0.4749	mg/L	0.010	0.5	0	95,0	85	115			

Qualifiers:

Е Estimated value

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit ND

- Holding times for preparation or analysis exceeded Н
- NC Non-Chlorinated
- RPD outside accepted recovery limits R

Date: 18-Oct-11

Water Solutions

Project: Debontin RG-92910

Project:	Debontin RG-92910								Work	Order:	1109882
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLim	it Qual
Method: EPA 2	00.8: Dissolved Metals		•••								
Sample ID: MB		MBLK				Batch ID:	R48158	Analysi	s Date:	10/4/2011	11:01:15 AM
Antimony	ND	mg/L	0.0010								
Arsenic	ND	mg/L	0.0010								
Selenium	ND	mg/L	0.0010								
Sample ID: MB		MBLK				Batch ID:	R48158	Analysi	s Date:	10/4/2011	12:48:31 PM
Arsenic	ND	mg/L	0.0010								
Selenium	ND	mg/L	0.0010								
Sample ID: MB		MBLK				Batch ID:	R48287	Analysi	s Date:	10/7/201	1 3:26:38 PM
Antimony	ND	mg/L	0.0010								
Arsenic	ND	mg/L	0.0010								
Selenium	ND	mg/L	0.0010								
Thallium	ND	mg/L	0.0010								
Uranium	ND	mg/L	0.0010								
Sample ID: LCS		LCS				Batch ID:	R48158	Analysi	s Date:	10/4/2011	11:05:22 AM
Antimony	0.02547	mg/L	0.0010	0.025	0	102	85	115			
Arsenic	0.02548	mg/L	0.0010	0.025	0	102	85	115			
Selenium	0.02737	mg/L	0.0010	0.025	0	109	8 5	115			
Sample ID: LCS		LCS				Batch ID:	R48158	Analysi	s Date:	10/4/2011	12:50:34 PM
Arsenic	0.02549	mg/L	0.0010	0.025	0	102	85	115			
Selenium	0.02710	mg/L	0.0010	0.025	0	108	85	115			
Sample ID: LCS		LCS				Batch ID:	R48287	Analysi	s Date:	10/7/2011	3:30:45 PM
Antimony	0.02407	mg/L	0.0010	0.025	0	96.3	85	115			
Arsenic	0.02528	mg/L	0.0010	0.025	0	101	85	115			
Selenium	0.02577	mg/L	0.0010	0.025	0	103	85	115			
Thallium	0.02413	mg/L	0.0010	0.025	0	96.5	85	115			
Uranium	0.02410	mg/L	0.0010	0.025	0	96.4	85	115			
Method: EPA M	ethod 245 1: Mercury										
Sample ID: MB-2	8611	MBLK				Batch ID:	28611	Analysi	s Date:	9/28/2011	11:58:24 AM
Mercury	ND	mg/L	0.00020								
Sample ID: LCS-	28611	LCS				Batch ID:	28611	Analysi	s Date:	9/2 8 /2011	12:00:09 PM
Mercury	0.005217	mg/L	0.00020	0.005	5E-05	103	80	120			

Qualifiers:

Е Estimated value

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit ND

- Н Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- RPD outside accepted recovery limits R

Client: Wa	ater Solutions										
Project: De	bontin RG-92910								Work	Order:	1109882
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method	300.0: Anions										
Sample ID: 1109882-01	IAMSD	MSD				Batch ID:	R48002	Analys	sis Date:	9/26/2011	2:57:29 PM
Fluoride	0.9023	mg/L	0.10	0.5	0.437	93.1	71.7	1 1 4	2.25	20	
Chloride	11.82	mg/L	0.50	5	6.789	101	78	107	1.77	20	
Sulfate	44.69	mg/L	0.50	10	35.1	95.8	87	106	1.67	20	
Sample ID: MB		MBLK				Batch ID:	R48002	Analys	sis Date:	9/26/2011	1:47:52 PM
Fluoride	ND	mg/L	0.10								
Chloride	ND	mg/L	0.50								
Nitrate (As N)+Nitrite (As	N) ND	mg/L	0.20								
Sulfate	ND	mg/L	0.50		,						
Sample ID: MB		MBLK				Batch ID:	R48010	Analys	sis Date:	9/27/2011	12:29:20 PM
Fluoride	ND	mg/L	0.10								
Chloride	ND	mg/L	0.50								
Nitrate (As N)+Nitrite (As	N) ND	mg/L	0.20								
Sulfate	ND	mg/L	0:50								
Sample ID: LCS		LCS				Batch ID:	R48002	Analys	sis Date:	9/26/2011	2:05:16 PM
Fluoride	0.5080	mg/L	0.10	0.5	0	102	90	1 10			
Chloride	4.917	mg/L	0.50	5	0	98.3	90	110			
Nitrate (As N)+Nitrite (As	N) 3.517	mg/L	0.20	3.5	0	100	90	110			
Sulfate	, 9.967	mg/L	0.50	10	0	99.7	90	110			
Sample ID: LCS		LCS				Batch iD:	R48010	Analys	sis Date:	9/27/2011	12:46:45 PM
Fluoride	0.5148	mg/L	0.10	0.5	0	103	90	110			
Chloride	4,948	mg/L	0.50	5	0	99.0	90	110			
Nitrate (As N)+Nitrite (As	N) 3.544	mg/L	0.20	3.5	0	101	90	110			
Sulfate	9.933	mg/L	0.50	10	0	99.3	90	110			
Sample ID: 1109882-01	IAMS	MS				Batch ID:	R48002	Analys	sis Date:	9/26/2011	2:40:05 PM
Fluoride	0.8822	mg/L	0.10	0.5	0.437	89.0	71.7	114			
Chloride	11.62	mg/L	0.50	5	6.789	96.6	78	107			
Sulfate	43.95	mg/L	0.50	10	35.1	88.4	87	106			
Mathed Child220D	Alkalinik	·····									
Sample ID: 1109882-0		MSD				Batch ID:	R48023	Analys	sis Date:	9/26/2011	8:04:00 PM
Allesteite Tatal (As OsO)	03) 249.9	mall Ca	20	80	180.8	73.8	37.1	121	1.99	7.21	
Alkalinity, Total (As CaC)	()3) 240.0		20	00	100.0	Batch ID:	R48023	Analy	sis Date:	9/26/2011	7:07:00 PM
			00								
Alkalinity, Total (As CaC	O3) ND	mg/L Ca	20								
Carbonate	ND	mg/L Ca	2.0								
Bicarbonate	ND	mg/L Ca	20			Botob ID:	049072	Analy	eie Data [,]	9/26/2011	7·14·00 PM
Sample ID: LCS-1		LUS				Daton D.	00		olo Dalo.		
Alkalinity, Total (As CaC	O3) 85.40	mg/L Ca	20	80	8.48	96.2	90	110	ala Dotai	0/00/0044	7.40.00 044
Sample ID: 1109882-01	IAMS	MS				Batch ID:	R48023	Analy	sis Date:	9/20/2011	7:40:00 PW
Alkalinity, Total (As CaC	O3) 253.8	mg/L Ca	20	80	189.8	80.0	37.1	121			

Qualifiers:

Е Estimated value

Analyte detected below quantitation limits J

Not Detected at the Reporting Limit ND

Holding times for preparation or analysis exceeded Н

NC Non-Chlorinated

RPD outside accepted recovery limits R

Client:	Water Solut	ions										
Project:	Debontin R	G-92910								Work	Order:	1109882
Analyte		Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	wLimit Hig	ghLimit	%RPD	RPDLimi	t Qual
Method: SM254 Sample ID: 11098	0C MOD: Total 382-01AMSD	Dissolved §	Solids MSD				Batch ID:	28615	Analysi	s Date:	9/30/2011	11:28:00 AM
Total Dissolved Sol Sample (D: MB-2)	lids 8615	1284	mg/L <i>MBLK</i>	20.0	1000	269	102 Batch ID:	80 28615	120 Analysi	0.156 s Date:	5 9/30/2011	11:28:00 AM
Total Dissolved Sol Sample ID: LCS-2	lids 28615	ND	mg/L LCS	20.0			Batch ID:	28615	Analysi	s Date:	9/30/2011	11:28:00 AM
Total Dissolved Sol Sample ID: 11098	iids 382-01AMS	1007	mg/L <i>M</i> S	20.0	1000	0	101 Batch ID:	80 28615	120 Analysi	s Date:	9/30/2011	11:28:00 AM
Total Dissolved Sol	ids	1286	mg/L	20.0	1000	269	102	80	120			
Method: EPA M	ethod 180.1: Ti	urbidity				-						
Sample ID: MB			MBLK				Batch ID:	R47968	Analysi	s Date:	9/26/2011	2:56:00 PM
Turbidity		ND	NTU	0.50								

Qualifiers:

E Estimated value

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit

- H Holding times for preparation or analysis exceeded
- NC Non-Chlorinated
- R RPD outside accepted recovery limits

Page 5